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Robust image watermarking technique based
on quantization noise visibility thresholds

Florent Autrusseau, Patrick Le Callet

Ecole polytechnique de l’Université de Nantes,
Rue, Ch. Pauc, La Chantrerie,

44306 Nantes Cedex 3, FRANCE

Abstract

A tremendous amount of digital multimedia data is broadcasted daily over in-
ternet. Digital data being very quickly and easily duplicable, intellectual property
rights protection techniques, appeared about fifty years ago (see (14) for an extended
review). Digital watermarking was born. Since its birth, many watermarking tech-
niques appeared, in all possible transformed spaces. However, an important lack in
watermarking literature concerns the human visual systems models. Several Human
Visual System (HVS) model based watermarking techniques have been designed in
the late 1990’s. Due to the weak robustness results, especially concerning geomet-
rical distortions, the interest in such studies have been reduced. In this paper, we
intend to take benefit from the last advances in HVS models and watermarking
techniques to revisit this issue. We hereby demonstrate that it is possible to resist
to many attacks, including geometrical distortions, in HVS based watermarking al-
gorithms. The used perceptual model takes into account very advanced features of
the HVS , fully identified from psychophysics experiments conducted in our lab.
This model have been successfully applied in quality assessment or image coding
schemes. In this paper, the human visual system model is used to create a percep-
tual mask, in order to optimize the watermark’s strength. The obtained optimal
watermark ensures both invisibility and robustness requirements. Contrary to most
watermarking schemes using advanced perceptual masks, in order to best thwart
the de-synchronization problem induced by geometrical distortions, we propose here
a Fourier domain embedding and detection technique optimizing the watermark’s
amplitude. Finally, the obtained scheme’s robustness is assessed against all attacks
provided by the Stirmark benchmark. This work proposes a new digital rights man-
agment technique using an advanced human visual system model and able to resist
to various kind of attacks including many geometrical distortions.

Key words: image watermarking, perceptual model, quantization noise, visibility
thresholds, geometrical distortions
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1 Introduction

1.1 Invisibility versus robustness: HVS and spread spectrum

Data hiding have been used for several purposes such as steganography, index-
ing, authentication, fingerprinting copyright protection or even copy control.
The requirements strongly differs for each of these applications (17). Concern-
ing the digital rights management, the main requirements are the copyright
invisibility, the embedded data capacity and the robustness against most at-
tacks the image could undergo. The first watermarking schemes performed
slight luminance modifications (7), (8) or less significant bits substitutions
(31). Since these techniques easily ensure the watermark invisibility and a high
embedding capacity, the robustness requirements are not fulfilled. Ensuring
the best invisibility versus robustness tradeoff is not obvious, for instance it is
well-known that a watermark embedded into perceptually non-significant data
components would easily be removed by an appropriate perceptual lossy com-
pression (12). This observation brought the Spread Spectrum theory into wa-
termarking techniques. In spread spectrum theory, the media (images, videos,
...) are considered as a communication channel and the embedded watermark
is viewed as the signal to be transmitted through this channel. The goal is then
to spread the watermark data over as many frequencies as possible. This en-
sures a good invisibility versus robustness tradeoff. Since most watermarking
techniques are actually based on ideas from spread spectrum communications
(2), we will not go here through all the details of this theory, but rather rec-
ommend readers to refer to these pioneering works using spread spectrum in
watermarking context (13), (12), (2). In fact, such techniques don’t guarantee
the optimal invisibility, which could only be provided by using a HVS model.
The interoperability between spread spectrum techniques and HVS models
remains a complex issue.

1.2 Visibility and watermarking

Concerning the vision aspects, the watermark’s invisibility is usually either em-
pirically assumed or only tested with simplified quality metrics such as Peak
Signal to Noise Ratio (PSNR) or Root Mean Square Error (RMSE). Most
watermarking approaches aiming in the optimization of the robustness versus
invisibility tradeoff are inspired on well-known perceptual properties from a
qualitative point of view rather than on advanced quantitative visual models.
This is all the more surprising since several image processing applications,
such as quality assessment (9), or compression (37) made the implementation
of complex perceptual models possible. In watermarking applications, a few
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studies were conducted on perceptual masks creation in watermarking context.
A perceptual mask is supposed to provide for every image site the maximum
amount one can add or subtract without producing any visible difference.
A typical example of qualitative HVS properties exploitation is addressed in
(19), where the authors made the following heuristic assumptions: the noise
sensitivity is weak on the image edges, smooth areas are very sensitive to vari-
ations and textured areas have a high noise sensitivity level. An edges-texture
classification is then used in order to create Just Noticeable Difference (JND)
Masks. The so obtained content based watermarking technique was found to
be resistant against several attacks, such as JPEG compression, cropping, or
Gaussian noise addition. However, although such heuristic properties can be
exploited to implement simple JND masks, some very useful HVS features are
not taken into account. For instance, using an advanced HVS model could
allow to fully exploit the masking effects, and thus, to optimize both the in-
visibility and the mark’s robustness. Hence, several works exploiting advanced
HVS models have been conducted. The next sub section is devoted to a brief
presentation of the most significant works dealing with the use of advanced
HVS models in watermarking applications.

1.3 Advanced HVS models in watermarking

An interesting study was conducted by Bartolini et al. (46) on perceptual
masks. Here the authors built several JND masks. They used a multiple
channels HVS model, which was designed to predict the visibility thresholds
for simple sine wave gratings. The authors tested the watermark’s robust-
ness against JPEG compression, circular cropping, de-speckle filtering and
dithering. They claimed that the masks based on heuristic considerations pre-
sented better detection results than the proposed HVS based mask. How-
ever, the exploitation of such JND masks in a spatial domain watermarking
technique could probably not resist to any geometrical distortions as a de-
synchronization problem would inevitably occur. Furthermore, the assump-
tion that the watermark may be assimilated to a simple signal is erroneous.
Therefore, the HVS model is not adequate in this context.

Delaigle et al. (15) have performed an interesting watermarking scheme ex-
ploiting visual discrimination of edge and texture. In this work, the authors
computes the image’s local energy by using analytic filters, and consider the
watermark as masked if its energy remains below the computed mask’s energy.
In fact, an important key-point in this work was the use of watermarks present-
ing good auto-correlation properties. Besides these two ideas, the watermark
location was not fully described and its spreading over the spectrum was not
clearly detailed. Their watermarking algorithm have been tested against three
attacks: noise addition, JPEG compression and low-pass filtering.
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Podilchuk and Zeng (28) proposed an image adaptive watermarking algorithm
for both DCT and DWT domains. On one hand, DCT domain JND masks are
issued from quantization matrices established by Watson in (40). On the other
hand, JND masks applying to the DWT domain are computed from visual
thresholds for wavelet quantization error (35). For both embedding domains,
the watermark’s robustness have been tested against JPEG compression, Re-
scaling and Cropping. It is important to notice in these cases, that the tested
scaling rates were quite small, and an interpolation was applied prior using
the detection algorithm.

Kutter and Winkler presented in (3) an original watermarking technique mix-
ing both a vision model and the spread-spectrum theory. This work takes into
account advanced HVS properties, such as masking effects or band-limited
local contrast, but it is based on simple signals detection (sine wave grat-
ings). The authors clearly mentioned that their goal was to introduce opti-
mal weighting functions, rather than to provide a full digital watermarking
technique. Thus, they only tested the scheme’s robustness against JPEG com-
pression. They discussed on a few possible extensions of this work in order
to resist to geometrical distortions, such as using a reference watermark for
spatial synchronization, or the concept of self-reference (multiple watermark
embedding).

While these techniques usually ensure a good invisibility versus robustness
tradeoff, their robustness against geometrical transforms is not well estab-
lished. No HVS based schemes were ever tested against all Stirmark attacks.
Such studies highlight the interoperability problem between HVS models and
watermarking techniques in classical transformed spaces (DCT and DWT). In
the previously cited works, this implies a HVS model simplification, and thus,
a loss of the model’s accuracy.

1.4 The proposed approach

Besides the usual weaknesses of HVS based watermarking techniques one can
cite :

• The used HVS models are based on simple signals detection thresholds.
Such signals are not realistic regarding to the watermark properties.

• The interoperability between the HVS model and the watermark embedding
technique may not be optimum. To improve the mark’s robustness, many
authors chose to embed the watermark in DCT or DWT transformed spaces,
whereas these domains do not allow the implementation of a suitable HVS
model.
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As in (28), the work presented here also uses a model of quantization noise visi-
bility thresholds (on complex signals rather than simple sine waves gratings) to
determine JND values. These latter are evidently represented in the spatial do-
main, but the extraction technique operates in the Fourier domain in order to
best resist to most attacks. Previous psychophysics experiments conducted in
our lab led to define band-limited local contrast and associated optimal quan-
tization laws with remarkable properties. The obtained HVS model, mainly
used for quality assessment or image coding purpose have also been exploited
for data hiding frameworks, limited to JND mask implementation (5), and
spatial watermark embedding (6). Besides the invisibility requirement, a very
important issue in watermarking schemes implementation is the definition of
an optimal embedding space regarding to robustness requirements. Contrary
to previous schemes exploiting perceptual masks (19), (46), (6), an important
aim of this contribution is to provide a geometrical distortions resilient water-
marking algorithm. Although the spatial domain is well known to provide an
important embedding capacity while still ensuring the mark’s invisibility, it
presents very weak robustness features. The major interest of DCT or DWT
based watermarking techniques lies in their possible adaptation into compres-
sion standards. However, such methods might not allow an efficient watermark
detection after geometrical distortions as the ones introduced in the Stirmark
benchmark (20), (27), (26). Furthermore, as explained in section 2, contrary
to Fourier domain, which is well suited to model the Human Visual System
behavior, both DCT and DWT domains present serious incompatibilities with
the use of advanced Human Visual System models. Hence, among all possible
transformed spaces, we opted for a Fourier space watermarking technique as
it allows good robustness properties to many kind of distortions. Furthermore,
unlike most presented HVS based watermarking schemes, this work proposes a
perceptual model composed of strictly defined overlapping visual sub-bands.
Such decomposition ensures that masking effects are restricted into the vi-
sual sub-band, and thus, the watermarks are completely included into the
sub-bands.

Our study presents several differences with the previously cited works. The
first difference lies in the weighting coefficient computation, which, in our
case, is based on quantization noise visibility thresholds established during
psychophysics experiments with several observers on complex images. Con-
trary to Kutter and Winkler (3) we wish here to build a full watermarking
scheme, and thus, to provide an efficient detection algorithm. Hence, we hereby
propose a spatial perceptual mask creation, combined with a Fourier domain
detection technique able to resist to various kind of attacks, including several
geometrical distortions. Finally, another important strength of the presented
schemes lies in the clear definition of the perceptual sub-bands (unlike De-
laigle et al. (15)), allowing a very good delimitation of the masking effects
in the Fourier spectrum. The HVS model ensures each frequency watermark
to be maintained within the visual sub-band, and the interactions with other
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channels are strictly avoided. An important key-point of this work lies in the
use of a Fourier domain watermarking embedding technique with an adapted
weighting scheme using a spatial perceptual mask.
The next section is devoted to a detailed presentation of the used HVS model
and the quantization noise visibility thresholds computation is given (equa-
tion 4). The watermarking technique presented in section 3 takes benefit of the
HVS model’s spectral decomposition to optimize the tradeoff between invisibil-
ity and robustness. This section details the theoretical watermark perceptual
stretching to best match the perceptual mask (given in a spatial represen-
tation). Finally, experimental data on the optimum watermark strength and
spectral content are given and the technique’s robustness is assessed in section
4 against all Stirmark attacks.

2 Human visual system model

2.1 visibility

In the proposed watermarking scheme, we plan to exploit the HVS properties
in order to control the watermark’s invisibility. We need to compute ”Just
Noticeable Difference” masks (JND) as they should give the exact amount of
data one can add or subtract to each image pixel without producing visible
artifacts. Therefore, we should address low level parts of the HVS related to
visibility thresholds mechanisms. Unfortunately, even the low level parts are
not easy to model and several decades of psychophysics have been necessary to
provide elements of visibility threshold prediction. Experiments on sine wave
gratings have driven the emergence of the contrast sensitivity function (CSF)
concept, providing the just noticeable contrast threshold at a given spatial
frequency. In this case, the HVS is considered as a mono channel behavior
whose MTF is the CSF. Several CSF models have been proposed in the lit-
erature (47), (48). For luminance component (grey levels images), it is well
admitted that the CSF is band-pass although some studies suggested that
this is not true for suprathreshold conditions leading to the concept of con-
trast constancy. In watermarking applications, we are concerned with visibility
around threshold so usual CSFs could be exploited. Nevertheless, CSFs are
not adapted to predict visibility for complex signals, essentially because they
are not able to emulate masking effects. Masking effect happens when the
visibility of a signal is affected by other signals. One can see masking effect as
a modification of the CSF and some attempts to define the parameters that
affects the CSF shape can be found in the literature. Since CSFs are related
to simple signals experiments, they are not appropriate in real image context.
In fact, masking effect modeling needs to consider HVS as a multichannel
rather than a mono channel. Several physiological studies showed that most
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cells in the HVS are tuned to specific visual information, such as color, ori-
entation or frequency. Psychophysics experiments (10) (29) have pointed out
the HVS multi-resolution structure. The HVS behavior can be modeled by
spatio-frequency visual channels. The visual channels are modeled by a filter
bank separating each perceptual channel also called perceptual sub-band. The
major asset of such HVS decomposition would lie in the clear definition of vis-
ibility thresholds for each single visual channel. Furthermore, multi-channel
HVS decomposition is perfectly suited to model masking effects. Masking ef-
fect occurs when the combination of two signals, which could be visible taken
independently, produces an overall imperceptible signal. Masking effects have
been the subject of many studies and several models have been proposed (21)
(16) (18) (34). Most authors agree on the general shape of the HVS decompo-
sition, this latter is usually represented as a polar representation of separable
channels. Nevertheless, although the decompositions are usually based upon
angular and radial selectivities, a wide variation is found on the filters param-
eters (30), (39), (11),(22). The complexity of the masking phenomenon led
many researchers to study these effects on simple sine-waves gratings. Several
studies were conducted on the masking effects of oriented sine-waves gratings
(16), for different spatial frequencies (21), or even on chromatic and achromatic
signals masking (24). Besides these models presenting good properties for sim-
ple sine-wave gratings, several psychophysics studies have been conducted to
identify the visibility of more complex and realistic signals such as quanti-
zation noise. The results have shown some important differences comparing
with simple signal visibility, but modeling in such context remains difficult.
One attempt have been done by Watson (38) in order to predict the visibil-
ity of quantization noise in DWT domain. An interesting study pointing out
the serious incompatibilities of the wavelet domain with HVS models have
recently been conducted (41). Effectively, the Fourier spectrum properties,
namely, the conjugate symmetry property are incompatible with the wavelet
sub-bands. For instance, on figure 1, the (III, 2) and (III, 6) sub-bands are
completely independent, each one has its own visibility threshold (see equa-
tion 4), whereas for the same spatial frequency locations, the two obtained
wavelet sub-bands represent the same image content, in fact, these two sub-
bands are the same in the wavelet decomposition (see (25) for a comparison
between these two decompositions). We have previously developed in our lab
a model of quantization noise visibility with a coherent approach according
to HVS multichannel decomposition. This allows to use a more realistic visi-
bility model than those based on simple signals. The next sections describes
this visibility model, it introduces a channel decomposition and its associated
masking effect model.
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2.2 Perceptual Channel decomposition

Based on psychophysics experiments conducted in our lab, we have derived a
Perceptual Channel Decomposition (PCD). The PCD’s filters are similar to
the cortex filters developed by Watson (36) (39). However, they have been
adapted to the frequency splitting of figure 1, which is not dyadic according
to radial frequencies. Moreover, in this decomposition the angular selectivity
is not constant. The PCD presented above in figure 1 uses a set of three band-
pass radial frequency channels (crown III, IV , V ) each being decomposed into
angular sectors with an oriented selectivity of 45o, 30o and 30o respectively.
Channel number II has been merged with the low-pass channel (crown I),
which is non-directional, and gives rise to a simple low-pass radial frequency
channel (this latter is denoted here as LF). The used Cortex filters are defined
as the product between Dom filters which characterize the radial selectivity
and Fan filters providing the angular selectivity. Interested readers may consult
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1
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34

5

6

1

23
4
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fx (cy/d°)

Angular selectivity

   LF: none

   III: 45°

   IV: 30°

   V: 30°

L
F

II
I

IV
V

28.2 cy/d°

5.7 cy/d°

1.5 cy/d°

14.2 cy/d°

Fig. 1. Perceptual sub-band decomposition performed onto the Fourier Spectrum

(32) for more details on the filters creation.

2.3 Masking effects through quantization noise visibility

The local band limited contrast introduced by E. Peli (23) takes into account
the important fact that the perception of a detail depends on its local neigh-
borhood. The computation of local contrast goes through a decomposition of
the image into perceptual sub-bands. This local contrast for a given (m,n)
image location and for a given i sub-band is defined as the ratio between a
sub-band luminance and the mean luminance of the considered channel which
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means the sum of all luminances located under the considered sub-band.

Ci(m, n) =
Li(m, n)

∑i−1
k=0 Lk(m, n)

(1)

where i represents the ith radial channel and
∑i−1

k=0 Lk(m, n) is the low fre-
quency signal corresponding to the ith sub-band. For the PCD presented in
section 2, this local band limited contrast is slightly modified to take into
account the angular selectivity :

Ci,j(m,n) =
Li,j(m, n)

∑i−1
k=0

∑Card(l)
l=0 Li

k,l(m, n)
(2)

where Li,j(m, n) and Ci,j(m,n) respectively represents the luminance and con-
trast at the (m, n) position of ith radial channel and jth angular sector. Card(l)
is the number of angular sectors in the kth radial channel. The contrast can
be rewritten as :

Ci,j(m,n) =
Li,j(m, n)

Li(m, n)
(3)

where Li(m, n) is the local mean luminance at the (m,n) position (i.e. the
spatial representation of all Fourier frequencies below the considered visual
sub-band). The local contrast definition is chosen to determine the allowable
watermark strength. Previous studies, conducted on the perceptual decom-
position given in figure 1, determined invisible quantization thresholds (33).
In this study, each perceptual sub-band went through a quantization process
and the image overall quality was assessed by a set of observers. The threshold
contrast notion (∆C) has been introduced in order to provide the maximum
quantization step, which do not visually affects the image. From psychophysics
experiments (33), this threshold contrast is given by equation 4.

∆Ci,j =
Ei,j

L0

(
∆fi

f0,i

)λi,j

(4)

where ∆Ci,j is the threshold contrast, and Ei,j is the (i, j) sub-band’s power.
L0 is the screen luminance, ∆fi is the ith radial bandwidth, f0,i is the central
frequency of sub-band i, and λi,j is a constant depending on sub-band (i, j).
The λi,j values for each crown are given in the table 1.
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Crown II III IV

λi,j -1.52 0.094 -0.28
Table 1
Parameters for intra channel masking for each DPC crown (33)

2.4 Perceptual mask

As previously seen in section 2.3, we are able to define the visibility of complex
signals. These thresholds will now be used in a watermarking context for the
strength determination process. Since this model operates in a pyschovisual
space, we must transform digital images in luminance. This very important
statement, which have never been taken into consideration in any watermark-
ing algorithm, implies that a watermark might be invisible on a specific screen
but would present quite annoying artifacts while viewed on another monitor.
An ideal perceptual watermark should not only be image-dependent, but also
display-dependent. The screen’s ”Gamma function” obtained from the moni-
tor’s calibration is usually used to transform the digital grey level image values
into perceived luminance.

We saw in section 2.2 that the Perceptual Channel Decomposition may be
used to extract any visual sub-band. The watermark can be embedded in
any of the so-obtained sub-bands. The proposed masking effect model suggest
that we can control the visibility on each spatial site of each sub band. So the
image’s most adequate sites can be easily defined by simply extracting one
or several spectrum sub-band, this selection may be content based, i.e. one
could select for each crown, the sub-band having the biggest energy. Derived
from equation 3, the maximum variation ∆Li,j (m,n) (maximum watermark
strength) allowable for each (i, j) sub-band and for each (m, n) pixel position
without providing visible artifacts is given by

∆Li,j (m, n) = ∆Ci,j × Li,j (m,n) (5)

In the following, the watermark will be assimilated to a quantization noise.
According to equation 5, it clearly appears that the detection threshold de-
pends on both the local mean luminance (Li,j (m,n)), and the quantization
step value (∆Ci,j). It is important to notice that, for each orientation of a par-
ticular crown, the local mean luminance is the same (represented by all the
lowest frequencies), this means that the only difference between two masks
provided by two sectors of a same crown will come from the ∆Ci,j value of
this particular crown. It is also interesting to note that for the seven tested im-
ages, within a frequency crown the computed ∆Ci,j values for each sub-band
showed only a weak variation.
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3 Watermarking process

In (5), we have already exploited this HVS model for a JND mask creation
technique. The obtained JND mask has been tested in different spaces (DCT,
DWT and spatial embedding). According to the obtained results the mask
implementation steps have been slightly modified (6). The perceptual mask
was first created according to the content of three visual sub-bands (e.g. (III,1)
(IV,2) (V,4)) and located in the image edges. Detection reliability tests showed
a higher watermark robustness in the uniform areas rather than on the image
edges. Although a watermark embedding in the uniform areas offers a very
good robustness, the use of a powerful HVS model is crucial as the modifica-
tions in such regions are very easily perceivable. The use of the HVS model
in these studies ensured the watermark invisibility for every context and op-
timized the robustness against many attacks. These techniques, operating a
spatial domain extraction process, showed very interesting robustness prop-
erties against several distortions. However, theses methods suffered of weak
robustness results against most geometrical attacks. Due to its well-known
adaptation to the HVS behavior, the Fourier domain presents interesting fea-
tures for image watermarking techniques. Our goal in the next section is to
propose a Fourier domain embedding and extraction scheme while ensuring
the best watermark amplitude below the given perceptual mask.

3.1 JND adaptive watermark

Once the previously detailed HVS model implemented and the sub-band de-
pendent JND mask obtained, the watermark embedding technique itself is
rather simple, the watermark is weighted to best fit within the perceptual
mask. As previously detailed (section 2.4), the obtained perceptual mask is
spatially defined, which means it provides a spatial JND threshold for each
image pixel. As previously emphasized, for the robustness requirements, the
watermark embedding and extraction should be performed in the frequency
domain. Thus, regarding to the detection process, this will allow to store only a
small frequency watermark patch, instead of its spatial representation, spread
over the whole image’s size. A frequency watermark is created and modulated
onto a frequency carrier within a perceptual sub-band, its spatial representa-
tion is computed and compared to the spatial perceptual mask, the smallest
difference between these two images provides the weighting coefficient. The
watermark is then weighted by this weighting parameter and finally embed-
ded into the original data. Due to the Fourier transform linearity property,
the perceptual weighting coefficient can be applied either in the frequency or
spatial domain. In the presented algorithm, the watermark is a square shaped
zero-mean Gaussian random variable. The perceptual weighting coefficient (
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Ki,j) is given according to equation 6.

Ki,j = argminm,n

(

|∆Li,j(m, n)

WS(m, n)
|
)

(6)

where ∆Li,j(m,n) represents the previously defined visual mask and WS(m,n)
depicts the watermark’s spatial representation. It is important to notice that to
avoid phase reversals, only the real part of the spectrum is modified, while the
imaginary part is kept unchanged. Evidently, to respect the spectrum’s sym-
metry, the watermark’s symmetry must also be respected, as shown in figure
3(a). Once weighted, the obtained watermark is finally added to the original
image. This addition may be performed either spatially into the image or, af-
ter a Fourier transform, into the original spectrum coefficients. Figure 2 shows

Original
image

FFT

16x16
Watermark

(Fourier coefficients)

Spatial 
watermark

IFFT

Quantization 
threshold

X

Perceptual 
Mask

(IV,2)

(LF+III)

IFFT

argmin

Perceptual 
weighting 
coefficient

Visual model

X
Weighted

Spatial 
watermark

Sub-band limited 
frequency modulation

Fig. 2. Weighted watermark computation

the different steps of the weighted watermark computation. The upper branch
in figure 2 represents the mask creation steps. The Fourier transform is first
computed on the original image, and the Perceptual Channel Decomposition
is applied on the obtained spectrum. The perceptual mask is then obtained
from equation 5, and the perceptual weighting coefficient computed according
to equation 6. The watermark is finally weighted with this coefficient before
being embedded into the image (lower branch in figure 2). Figure 3 shows an
example of frequency watermark modulated onto a frequency carrier placed in
the middle of a visual sub-band (represented by the two square noise patterns,
superimposed to the PCD in figure 3(a)), the corresponding watermark’s spa-
tial representation (figure 3(b)) and the obtained marked image (figure 3(c)).
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(a) Frequency watermark (b) Spatial watermark

(c) Marked image

Fig. 3. Frequency watermark in sub band (IV,1) (3(a)), spatial representation of a
frequency watermark (3(b)), and the corresponding marked image (3(c))

Here, the watermark is designed as a square patch of random variables (16×16
coefficients), located in the visual sub-band (IV,1) (see figure 1).

3.2 Detection process

For each tested image, the cross-correlation was computed between the stored
original watermark and the portion of the image’s spectrum supposedly con-
taining the mark. The only needed data during the retrieval procedure is the
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original frequency watermark, and the frequency carrier where the mark is
embedded (2-D coordinates). The previously computed weighting coefficient
could also be stored along with the watermark frequency values in order to
allow a watermark extraction, providing a reversible watermarking scheme.
The cross-correlation function between two data sets x and y is given by r(d)
in equation 7, where x and y represents the sequences’ mean value.

r(d) =

∑
i [(xi − x) ∗ (yi−d − y)]

√∑
i (xi − x)2

√∑
i (yi−d − y)2

(7)

The most intuitive behavior we could expect from such technique would be
to obtain good detection features for soft geometrical distortions, but this
schemes might not present very competitive detection rates for stronger geo-
metrical attacks. However, it is important to notice that this technique might
present very interesting detection features after an approximative geometrical
distortion compensation. The detection process was reinforced by combining
this one-dimensional cross-correlation function with a two-dimensional ver-
sion, very useful for a re-synchronization process. The two-dimensional cross-
correlation function between x and y is given according to the Fourier theorem
by

x!y = F
[
X(ν) · Y (ν)

]
(8)

where ! is the correlation operator, X(ν) and Y (ν) respectively represent
the Fourier spectrums of x and y, and X is X’s complex conjugate. The main
advantage of such correlation is to help locating a correlation peak shift in two
dimensions. This peak shift information may be very useful to compensate a
possible geometrical distortion. Effectively, by comparing the new location of
the correlation peak to the watermark’s original location (the stored frequency
carrier), we can easily determine the possible distortions the image underwent.
Although we tested here the watermarking scheme’s detector response, we did
not focus on the threshold selection or the false alarm rate (43), (44), (45).
Further works will be devoted to this specific detection threshold selection
problem in the context of JND mask stretched watermarks.

4 Results

As the visual model performance has already been proven and assessed else-
where (33), (6), this section is devoted to the watermark’s robustness assess-
ment.
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4.1 Preliminary tests

In order to optimize the data detection, several watermark sizes have been
tested. The detection reliability is closely related to the watermark length.
Too small watermarks usually cause important false detection results, whereas
the reliability increases with the watermark size. We tested the watermark-
ing detection reliability with four images, each underwent a typical attack for
seven different watermarks lengths. Square shaped watermarks of size: 8× 8,
12 × 12, 16 × 16, 20 × 20, 24 × 24, 28 × 28 and 32 × 32 were independently
embedded into four images’ spectrums (horizontal middle frequency range as
depicted on figure 3(a)), Stirmark distortions were applied and the detection
process was performed. Figure 4 shows the cross-correlation results (Y-axis)
according to the watermark size (X-axis). It clearly appears here that for a wa-
termark size above 16×16 (256 coefficients), the scheme’s robustness sensibly
decreases for most attacks. This figure also confirms a possible weakness of the
method against strong geometrical distortions (rotation and scaling are con-
sidered here). Once the watermark size defined, we tested the watermarking

8x8 12x12 16x16 20x20 24x24 28x28 32x32
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Watermark length

image 'plane', Blur 3x3

image 'peppers', Rotation 2°

image 'lake', JPEG q=40%

image 'goldhill', scale 90%

Fig. 4. Watermark length optimization. Images ’plane’, ’peppers’, ’lake’ and ’gold-
hill’ respectively attacked by a 3× 3 blurring, a 2 degrees rotation, a q=40% JPEG
coding, and a 90% Scaling

scheme’s behavior for various frequency range, i.e. the watermark was respec-
tively embedded in the PCD crowns labeled III, IV and V (Fig. 1) and its
robustness was tested for each sub-band. Figure 5 shows the obtained normal-
ized cross-correlation coefficient for each of the 89 Stirmark attacks (20), (27),
(26). Cross-correlation of all Stirmark output images were sorted in alphabet-
ical order. Associations between the distortion name and the corresponding
attack index (X-axis) are given on the top of figure 5. These associations are
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more precisely detailed in table 2. The figure 5 clearly shows the best detection

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0.2

0.4

0.6

0.8

1.0

Stirmark attack index

Crown V

Crown IV

Crown III

Fig. 5. Cross-correlation coefficient for the barbara image against the 89 Stirmark
attacks when the III (dashed line), IV (solid line) and V (dotted line) PCD crown
are respectively marked.

results for mid-frequency range coefficients (results for crown IV are repre-
sented by the solid line). As explained in section 2, the local mean luminance
being the same for all sectors of a specific crown (denominator in equation 2),
the only difference between the JND masks issued from a single crown will
come from the quantization steps (1), which usually present weak variations.
Hence, from now on, the chosen embedding crown is the (IV, 1). Evidently,
one can choose to embed multiple watermarks, either in the same crown or in
independent crowns. The authors are presently working on an objective qual-
ity assessment technique based on multiple watermarks embedding using the
presented embedding framework. Based on this selection of the (IV, 1) sub-
band, the presented perceptual watermarking algorithm have been tested on 7
gray level images (whose names are given in Table 3) against the 89 Stirmark
attacks (this makes a total of 623 tested images). Figures 4 and 5 respectively
shows the optimum watermark length and the optimum embedding frequency
range (16 × 16 watermarks in crown IV). Before performing detection tests
on the Stirmark benchmark, a detection threshold must be defined. We then
tested the watermark’s robustness against false alarm. The detection process
was tested for six hundred different watermarks into an unmarked image, the
normalized cross correlation was computed for every trial. This process was re-
peated for three images. For the image lena degraded by a one degree rotation,
the 600 cross correlations coefficients are plotted in figure 6. According to this
detector response, three empirically chosen detection threshold (T=0.3, 0.4
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and 0.5) are tested in the following (see table 3). The choice of T=0.4 seems
reasonable and is used in the next figures to assess the detection power of this
algorithm. This latter allows a good detection rate while minimizing the false
alarm. Once again, it is important to notice here that our main goal was to
provide the best detection correlation for a HVS model based watermarking
and to resist to geometrical distortions, thus, we did not focus on the opti-
mal detection threshold selection. This particular topic will be studied further
in a another work dealing with image watermarking in a quality assessment
framework.

0 100 200 300 400 500 600
0.1

0.2

0.3

0.4

0.5

Watermarks

Fig. 6. Detector response. Only one matching watermark was found at position 200
(image ”lena”, 1 degree rotation).

4.2 Detection results

The one-dimensional cross-correlation was computed for seven images, and for
all Stirmark attacks. Four cross-correlation plots are given in figure 7. In these
figures, the horizontal axis represents the shift parameter (d) in equation 7,
whereas the vertical axis is the cross-correlation value (r(d)). The dashed lines
on figure 7 represent a detection threshold empirically set to 0.4. As the cross-
correlation function is given on the interval [−1, 1], the threshold’s negative
value is also represented. Figure 7 and 8 respectively show the one-dimensional
and two-dimensional cross-correlation graphs when the image underwent a ra-
tio (x=1.0, y=1.2 ) (figures 7(a) and 8(a)), a 10% cropping (figures 7(b) and
8(b)), a 2 degrees rotation (figures 7(c)) and 8(c)), and finally when 5 rows
and 1 column have been removed (figures 7(d)) and 8(d)). As theoretically
expected from the data retrieval technique, although the detection threshold
always allow a successful retrieval (in figure 7), the presented watermark-
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ing scheme presented a weaker robustness against geometrical distortions.
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(a) Ratio 1.0, 1.2
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(b) 10% Cropping
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(c) 2 degrees rotation
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correlation shift

5 Rows, 1 Column removed
Threshold

(d) 5 rows, 1 col removed

Fig. 7. 1D cross-correlation results

For such distortions, operating a mark de-synchronization, on the 2D correla-
tion plots (figure 8(d)), the correlation peaks clearly moved compared to the
watermark carrier (supposedly placed at the center of the map). The cross-
correlation results for the whole set of Stirmark attacks are given in figure
9 for the 7 tested images. The readers may refer to figure 5 or table 2 for
more details on the attacks index (x axis on figure 9). We can easily observe
that with the previously defined detection threshold (set to 0.4, represented
by the dashed lines), the watermark is still detected for most of the Stirmark
attacks, including several geometrical distortions. As expected from the de-
tection process, the watermark is usually detected as long as the distortion
keeps at least a part of the 16 × 16 noise like sequence within the 16 × 16
checked Fourier coefficients. Considering the 623 tested images (7 test images
and 89 attacks), the mean detection rate is found to be about 62% with a
detection threshold set to T=0.5, it equals 70% with a threshold set to 0.4.
And finally, this detection rate reaches 77% with a threshold set to 0.3 (see
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(a) Ratio 1.0, 1.2 (b) 10% Cropping

(c) 2 degrees rotation (d) 5 rows, 1 col removed

Fig. 8. 2D cross-correlation results

table 3), which is still a fair threshold regarding to the false alarm rate (figure
6). More detailed detection rates are given in Table 3, which shows both the
number of detected watermarks for the 89 attacked images (lines 1, 3 and 5),
and the corresponding detection rate (lines 2, 4 and 6). The last column gives
the total number of detected watermarks along with the appropriate rate for
the 623 tested images. During the detection process, attacked images have to
be scaled to the original image’s resolution, in order to seek into the same fre-
quency range, a zero padding is usually performed for cropped versions. Note
that using an interpolation technique may improve the detection results. The
storage of the frequency carrier as a percentage of the spectrum size could
also be used to perform the detection process, and would in fact avoid the
zero padding technique. However, this might not sensibly increase the overall
detection rate.
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(b) Boats image
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(c) Goldhill image
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(e) Lena image
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(f) Peppers image
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Fig. 9. Cross-correlation coefficient for the 89 Stirmark attacks for 7 test images.
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1 Marked image 24 JPEG 20 47 rotation -0,50 70 rot scale 1,0

2 17row 5col rem 25 JPEG 25 48 rotation -0,75 71 rot scale 10,0

3 1row 1col rem 26 JPEG 30 49 rotation -1,0 72 rot scale 15,0

4 1row 5col rem 27 JPEG 35 50 rotation -2,0 73 rot scale 2,0

5 5 row 17 col rem 28 JPEG 40 51 rotation 0,25 74 rot scale 30,0

6 5 row 1 col rem 29 JPEG 50 52 rotation 0,5 75 rot scale 45,0

7 4x4 med filter 30 JPEG 60 53 rotation 0,75 76 rot scale 5,0

8 2x2 med filter 31 JPEG 70 54 rotation 1,0 77 rot scale 90,0

9 3x3 med filter 32 JPEG 80 55 rotation 10,0 78 scale 0,50

10 Gauss filt 3x3 33 JPEG 90 56 rotation 15,0 79 scale 0,75

11 Sharp 3x3 34 linear Filt 1 57 rotation 2,0 80 scale 0,9

12 cropping 1 35 linear Filt 2 58 rotation 30,0 81 scale 1,1

13 cropping 10 36 linear Filt 3 59 rotation 45,0 82 scale 1,5

14 cropping 15 37 ratio (0,8 1,0) 60 rotation 5,0 83 scale 2,0

15 cropping 2 38 ratio (0,9 1,0) 61 rotation 90,0 84 shear (0,0 1,0)

16 cropping 20 39 ratio (1,0 0,8) 62 rot scale -0,25 85 shear (0,0 5,0)

17 cropping 25 40 ratio (1,0 0,9) 63 rot scale -0,50 86 shear (1,0 0,0)

18 cropping 5 41 ratio (1,0 1,10) 64 rot scale -0,75 87 shear (1,0 1,0)

19 cropping 50 42 ratio (1,0 1,20) 65 rot scale -1,0 88 shear (5,0 0,0)

20 cropping 75 43 ratio (1,1 1,00) 66 rot scale -2,0 89 shear (5,0 5,0)

21 flip 44 ratio (1,2 1,0) 67 rot scale 0,25

22 JPEG 10 45 reduce colour 68 rot scale 0,50

23 JPEG 15 46 rotation -0,25 69 rot scale 0,75

Table 2
List of Stirmark attacks along with the corresponding index

5 Conclusion

This work presents a new watermarking technique for copyright protection
using an advanced HVS model. The used perceptual model ensures the best
invisibility capacity and robustness trade-off. Contrary to most perceptual
JND masks, the visibility thresholds used in this study are computed for com-
plex signals rather than for simple gratings. The HVS model provides a spa-
tially defined Just Noticeable Difference mask, which gives the appropriate
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Threshold image Barbara Boats Goldhill Lake Lena Peppers Plane Total

0.5 Nb marks 58 58 61 57 54 42 59 389

0.5 Rate (%) 65 65 69 64 61 47 66 62

0.4 Nb marks 65 62 66 63 60 53 66 435

0.4 Rate (%) 73 70 74 71 67 60 74 70

0.3 Nb marks 71 68 73 71 66 60 70 479

0.3 Rate (%) 80 76 82 80 74 67 79 77
Table 3
Detection percentage against Stirmark attacks

weighting coefficient for a given watermark whose optimal length have been
assessed. The weighted watermark is finally embedded into the image, and
the detection process takes place in the Fourier domain. The watermark, a
square pseudo-random sequence, is embedded on Fourier domain coefficients
and its amplitude is stretched to best match the spatially defined perceptual
mask. The detection process performs a normalized cross correlation function
between the marked (and possibly attacked) part of the Fourier spectrum and
the original weighted watermark. This detection process provided very good
robustness results for a large set of attacks, including soft geometric distor-
tions. However, for stronger geometrical attacks, the detection process showed
weaker results. In fact, the presented detection scheme is able to detect the
mark as long as a geometric distortion keeps a small part of the watermark
into its original location, i.e. as long as the new watermark location (after be-
ing attacked) overlaps its original position. The main drawback such attacks
would induce is a mark de-synchronization problem : the detection process
only looks for the mark at a selected carrier and may not be able to detect
it when this latter moved far away from the carrier. The detector scheme was
tested on the 89 distorted versions of 7 tested images, the obtained overall de-
tection rate was about 70% for a detection threshold set to 0.4. Furthermore,
the 2D-crosscorrelation detection was proven to detect the degradation type,
and future works will be devoted to compensate such distortions before using
the detection process. Evidently, for several Stirmark attacks the presented
detection process is not able to detect the mark, but usually, these distortions
severely degrade the images’ quality or semantic content (rotations greater
than 10 degrees, important scaling, 10 to 15 percent JPEG quality compres-
sion). Such important attacks modify the images so severely that the obtained
images don’t represent any commercial interest.
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