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Abstract—There are numerous standards and recommen-
dations when it comes to the acquisition of visual quality
assessment from human observers. The recommendations
deal with clearly visible images and try to keep the just-
noticeable-difference between quality steps as small as pos-
sible to facilitate an exact measurement of image differences.
When it comes to the assessment of selective encryption
schemes the question is the opposite. The quality is not
really of interest, the question is rather if the content of the
images is discernible at all. There are no recommendations
in literature for this kind of task. In this paper we will
outline different protocols and setups, test them and form
a recommendation for the acquisition of the recognition
threshold for encrypted images from human observers.

I. Introduction
Selective encryption (SEnc) is the encryption, utilizing state

of the art ciphers like AES, of a selected part of a media file
or stream. The goal is to secure the content, or parts thereof,
while still maintaining the file format, that is the file is still
usable as the media file or stream it actually is.

When it comes to recognizing content there are various target
levels in terms of quality: transparent encryption wants to
reveal a low quality version of the content, e.g., as a preview,
sufficient encryption wants to reduce the content to a level
where a consumption of the image or video is no longer possible
but does not care if potential content is leaked, e.g., consumers
still recognize what is going on in a movie but the quality is
so low that a pleasurable viewing experience is prevented (pay-
per-view scenarios). Confidential encryption is the next step
where the goal is to actually make the content of the data
unrecognizable.

There are numerous SEnc encryption schemes, e.g., [1, 2, 3,
4], and an important assessment is always that of quality and
recognizability. It has been pointed out, [5], that the quality
assessment is problematic since quality metrics are not usually
built for such low quality material. The same paper also points
out that the automatic assessment of recognizability is not
possible since there are no metrics, databases or methods for
the generation of such databases in literature.

This is indeed our goal in this paper, we aim to produce a
set of guidelines for the acquisition of information pertaining
to the recognition threshold. That is, the threshold where the
encryption is so strong that it crosses from a low quality but
recognizable image/video to a image/video where the content
is no longer recognizable.

This can be formulated slightly differently, and in the style
of indistinguishability under chosen-plaintext attacks (IND-
CPA), as: When presented with both encrypted and non-
encrypted data, can one be mapped to the other?

We will present different methods to acquire the recogni-
tion threshold and compare them. Furthermore, we will look
at recording conditions, which might influence the ease and
quality of the acquired data, by starting with recommendations
for image quality evaluation tests, with very strict illumination
restrictions, to less controlled environments.

We will introduce these methods, environments and the
reasoning for them in Section II. In Section III we will describe
and perform the experimental analysis of the proposed methods
and discuss the findings. Section IV will recap the findings and
conclude the paper.

II. On the Acquisition of the Recognition Threshold
for Encrypted Images

The VQEG and ITU groups regularly issue recommendations
[6, 7, 8, 9] concerning the subjective setups and protocols. There
are numerous protocols and each one is adapted to a partic-
ular viewing task or image processing method. For instance,
ACR (Absolute Category Rating), DSIS (Double Stimulus
Impairment Scale) or DSCQS (Double Stimulus Continuous
Quality Scale) protocols can be used to rate the quality of an
encoding (compression) method. The Two Alternative Forced
Choice (2AFC) protocol is commonly used to track a visibility
threshold, and can thus be used in a data hiding framework.

Further, there are recommendations for the subjective test
setup which should adhere to several basic rules. The screen
should be calibrated, its luminance must be controlled. Sur-
rounding illumination has to be limited. The viewing distance,
the experiment duration, the observers’ acuity, are among the
parameters that must be controlled.

In this section we will discuss the acquisition method (pro-
tocol) and environment and the differences in assessment of
quality and recognizability with the goal of evaluating different
modalities to find the easiest setup, in terms of practicality,
which still yields high quality results. Finally we will discuss
the handling of outliers and generation of a recognizability score
based on the acquired data.

A. Protocols for Acquisition
What we want to acquire is a score per image which reflects

the recognizability of it’s content. This score should ideally be
on a continuous scale so that we can track the transition from
recognizablity to unrecognizability.

The regular acquisition methods for quality estimation of im-
ages are not applicable to finding the recognizability threshold.
The question is not how good the quality is but rather: Is the
original image still recognizable from the encrypted image? The



basic transference of the methodology from quality assessment
would be to present an original and an encrypted image and
ask the user whether or not information from the original
image is still retained in the encrypted image. This approach
suffers from apophenia, the tendency to perceive connections
and meaning between unrelated things.

To prevent this, a forced choice is suggested, where the
participant has to choose among a number of candidate images
and identify the “correct” one. If the contents of an image is
truly not recognizable then the participant has to guess. In
other words the ratio of observers which correctly identify the
image will tend towards the probability of random choice.

Three methods are conceivable, and will be tested in the
experimental section.

1) O3: Show a single original image and three encrypted im-
ages. The participant has to select the encrypted version
of the original image.

2) 3E: Three plain text images and one encrypted image is
shown. The participant has to select the correct original
image from which the encrypted image was derived.

3) Match2: Three originals and three encrypted images are
shown. One pair of images is an original and derived
encrypted image, the other four images have to be un-
related. The participant must select the matching pair.

The way these protocols display images is shown in Figure 1.
The reason the Match2 variant is used is that the one

vs. three methods might allow for exclusion type strategies
where images can be disregarded leading to a possible skew in
probability. In the long run this phenomenon should even out
but it might lead to a higher number of required participants
for that to happen.

For all three methods it is required to have images with
similar encryption strengths to be shown simultaneously.

B. Environment for Acquisition
The environment in which to perform quality assessment

is regulated by standards, e.g., ITU-R BT.500-13 [10]. The
standards are aimed at high quality tests and generating an
environment where the just noticeable difference in images is as
small as possible to enable an optimal quality assessment. Even
for quality assessment, strictly following these standards can be
called into question in part due to recent experiments. When
building the TID database [11, 12], laboratory setting were
conform to ITU-R BT.500-13 [10] and an off-site environment
(via internet) was used as well. The resulting data exhibited no
conspicuous disagreement.

A less stringent control over the environment clearly leads
to a easier and more manageable set up of experiments which
would allow easier acquisition of datasets to help in research,
as long as the quality of the acquired data does not suffer.

The need for the use of strictly constrained subjective en-
vironment setups may make sense when the subjective task
is to score the quality of slightly distorted images/videos, or
when the task is to track a visibility threshold (such as in a
data hiding framework). However, in the context of recogni-
tion of selectively encrypted images, where the task is not to
adjudicate a minute difference in quality but to decide if two
images contain the same content, the viewing conditions may
not significantly influence the results.

In order to evaluate the environmental influence on the
recording we will utilize three different setups:

1) Controlled (CE): The controlled environment uses a
calibrated monitor in a closed room, i.e., no natural light-
ing is present, and a strictly controlled artificial lighting
to conform to ITU-R BT.500-13 [10].

2) Semi-controlled (SE): A regular working space, some
measures were taken to limit extraneous light, e.g., blinds
were drawn.

3) Uncontrolled (UE): The uncontrolled environment is
simply what was available at the users own PC. The
experiment was set up to be used over the internet at
the workstation of the users PC.

Viewing distance: In both the CE and SE, a supervisor
instructed the observer to keep a proper viewing distance. The
viewing distance was set to 6 times the images’ height.

Scaling: Controlled and semi controlled environment have
screens which are sized so that the images are not scaled. The
uncontrolled environment scales down if necessary to display
the 6 images in the 3x2 configuration but will not scale up.

Illumination and Calibration: Optimally a controlled
environment and a high quality calibrated monitor is recom-
mended. The specs in the CE were: illuminant white point
CIE D65, maximum screen luminance of 200 cd/m2, screen
gamma function of 2.20, contrast ratio/ black point of 2 cd/m2

and background illumination of 10 lux. Our setup was thus
compliant with the recommendations of ITU-T REC P.910 [13],
ITU-R BT.500-11 [14] and ITU-R BT.500-13 [10].

Viewing Time: We restricted viewing time to prevent a
timely conclusion, which is important for the acquisition of
large amounts of data. The viewing time restriction also serves
to prevent fatigue for the observers. The time chosen was
8 seconds in opposition to the recommended 10 sec (ITU-
R BT.500-11 [14]). The reasons for this are twofold: 1) the
recognizability framework is easier than quality assessment and
consequently takes less time and 2) it allows for more com-
parison before observer fatigue sets in which is an important
practical consideration. We did not control for time in the
uncontrolled environment.

Vision Check: For the CE environment a proper vision
test was performed: Observers were screened to ensure perfect
visual acuity and detect possible color deficiencies. The Snellen
eye chart was used to control the acuity, and the Ishihara
color plates were used to validate a normal color vision. For
the SE setup the means were more limited but we utilized
an online vision test to check visual acuity, near vision and
color vision. No vision check was performed for the uncontrolled
environment.

Number of Observers: The minimum number of observers
recommended by all standards is 15 and was exceeded in all
environments.

The conformance of the various environments to the sug-
gested setup of the standards as described above is summarized
in Table I. The experiment of the acquisition protocol uses the
UE setup from the table but we could only procure sixteen
observers for this test.

C. Analysis of Data
The handling of the data is also somewhat different from

usual quality experiments. The main difference is that during
quality evaluation each observer gives a rating for each image.
Based on these ratings the outliers can be detected. For each
recognition task, the observer only generates a binary output,



O3 3E Match2

Fig. 1. Examples of the O3, 3E and Match2 protocols for the recognizability test.

TABLE I
Conformance to constraints by the acquisition

environments.

Lumi- Viewing Scale Vision View Observ-
nance Distance Check Time ers

CE 3 3 3 3 8 sec 45
SE 7 3 3 ∼ 8 sec 30
UE 7 7 7 7 ∞ sec 41

content recognized or not. The final score is an aggregate over
all observers, and is expected to trend towards the randomness
in case of unrecognizability. The probability of a randomly
correct guess ( pr) depends on the setup, each choice of images
is one in three resulting in pr3E = prO3 = 1

3
= 0.33̇, and

prMatch2 = 1
3

1
3
= 0.11̇.

Outlier detection: Outlier detection in the classical sense
will not work, since the data being collected are not numerical
scores, but rather some binary information representing correct
or incorrect recognition. A simple error aggregate also won’t
work since two observers can have the same number of errors
while not agreeing on a single image. Given that we have
essentially a vector with binary values the Hamming distance
comes to mind, then we can at least compare two observers
and get a meaningful score. An outlier in this context can then
be seen as an observer whose opinions strongly differ from the
majority of the other observers. To find outliers we can perform
a hierarchical clustering which starts with the smallest distance
and continues to cluster the elements together until a single
cluster has formed. The outliers can then be detected based on
statistics of similarity between observers like so: with O the set
of observers and D = {HD(Oi, Oj) | ∀Oi, Oj ∈ I, i ̸= j} the set
of pairwise distances we use the z-score zD = µ(D) + 3σ(D) to
find observers which are very far from the group consensus.

Depending on the aggregation of clustering it might be useful
to use the ℓ1 measure as a generalized version of the Hamming
distance, as long as no merging of vectors is performed, i.e., if
for a vector v, vi ∈ {0, 1}, i = 1, . . . ,#v holds, then ∥v−w∥1 =∑#v

i=0 |vi −wi| =
∑#v

i=0 vi ⊕wi = HD(v, w), with #v being the
dimension of the vector v (and w). This method might however
be useful if a different clustering or aggregation method is used.

As aggregation of cluster size, and distance to cluster cal-
culation, it is suggested to use the maximum over all pairwise
distances. That means that all pairwise distances in the cluster
are below the chosen threshold zD = µ+ 3σ.

The way this looks in practice can be seen in Figure 5 later in
the paper. The clustering is displayed as a dendrogram, a tree
of merge decisions, the y-axis gives the merges at the height of
the new cluster size. If the tree is cut off at a height matching
zD it will split into sub clusters where each cluster does not
contain outliers. The largest such cluster is then used as the

“correct” set of observers, the others are considered outliers
(marked in red in the dendrograms).

III. Experiments
We have set up experiments to evaluate the different methods

of acquisition and environments as specified in Section II. We
will analyze the setups and results and try to give recommen-
dations if more than one method was proposed.

The database of encrypted images: Figure 2 shows
samples of encryption for one method and image to give the
reader an idea about the makeup of the database. We used
images from the Kodak database1 having a landscape format,
specifically images numbered 6,8,13,14,16,21,23,24 (reduced
data set). This was augmented in later stages with images
id, 11, 20, 22 from the Kodak database, furthermore gray-
scale versions of images number 23 and 24 as well as a Philips
PM5544 test pattern2 cropped to the Kodak image size were
included. This extended data set was used later in the test
when the setup was fixed and a larger data set could be
accommodated due to a more limited number of experiments.

A Note on the Datasets: The choice of data set in our case
was to use images which are known in the vision community.
Since SEnc strongly depends on the content of the image and
the algorithm used we decided to also include the Philips
PM5544 test pattern since it contains blocks of color and
frequency information and allows a more clean separation of
content type than a natural image.

It is interesting to notice that the recognizability rate
strongly depends on the image content. For instance, all images
in Figure 3 are encrypted with the same parameters, but, as can
be observed, this induces very different recognizability rates,
also reported in the figure. The color patches influence the
recognition, as observed in the third row of Fig. 3. While the
influence of uniformly colored areas is clearly apparent in the
third image it can also happen in natural images, as exemplified
in the second row where uniform dark areas remain visible.
For the generation of a testset it is therefore recommended to
also include artificial images, like the test pattern, which allow
for the clear identification of the process leading to a higher
recognition rate. While such circumstances can be deduced
from natural images as well, row two, it is a far simpler task
when the results are as clear as the example in the third row.

A Note on the Encryption: To describe the three en-
cryption methods, [2, 3, 4], used would only clutter the paper
without giving any new insight. It should suffice that the
encryption strength ranges from a relatively high quality to
a non recognizable quality, illustrated in Fig. 2 and 3.

1http://r0k.us/graphics/kodak/index.html
2https://commons.wikimedia.org/wiki/File:PM5544_with_

non-PAL_signals.png

http://r0k.us/graphics/kodak/index.html
https://commons.wikimedia.org/wiki/File:PM5544_with_non-PAL_signals.png
https://commons.wikimedia.org/wiki/File:PM5544_with_non-PAL_signals.png


Fig. 2. A sample from the database (Kodak #24): the original image and it’s encrypted variants for one of the encryption methods.

(a) image 3 (b) image 7 (c) Philips PM5544

(d) RE = 0.874 (e) RE = 0.329 (f) RE = 0

Fig. 3. Original images (top), along with their encrypted version
(bottom) using the same encryption parameter, recognition errors
(RE) are also given per image.

A. Evaluation of the Acquisition Protocol
Three layouts were tested, O3, 3E and Match2, as described

in Section II-A and illustrated in Fig. 1.
A web-based version of the experiment was tested with six-

teen observers. The tests were conducted in normal office/home
viewing conditions, i.e. varying sunlight illumination, various
screen resolutions, uncalibrated monitors, varying viewing dis-
tances, in essence similar to the UE setup.

The experiment was composed of 8 images (reduced data
set), each one being distorted with a single encryption method
with 6 different encryption parameters, thus composing a
dataset of 56 images. The collected outputs were the number of
mis-detections. In Figure 4, we show how the detection errors
were distributed across the three setups. Overall, the decision
appeared to be more difficult for the Match2 protocol.
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Fig. 4. Repartition of the mis-detections across the three pre-tests.

Our goal is to collect a set of recognizability scores that
will be continuously distributed. The recognizability score is
in essence the percentage of observers who recognized the
content. If the decision process is too simple, few if any errors
will happen and the resulting score will almost be binary.
This would allow us to state that there are recognizable and
unrecognizable images, but not what happens between these

two states. A result that is continuous allows us to perform
research at the transition from recognizable to unrecognizable.
Match2 spans a wider range of missed detections, resulting in
more errors and a higher number of scores which are between
recognizable/nonrecognizable. More errors allow for a better
approximation of a continuous score, insofar as that is possible
with a countable number of observers.

This work is part of a wider project, where the aim is not only
to design the best subjective protocol for a recognizability task
(work presented in this paper), but we also plan to compare
recognizability to a regular quality assessment task. Moreover,
in future works, we aim to determine the Objective Quality
Metric that will best predict the recognizability. Thus, in order
to reach these goals, we need to collect a subjective dataset
which is focused onto the transition from unrecognized to
recognized content (the slope of the curves in Fig. 7).

B. Evaluation of the Acquisition Environment
The Match2 protocol was chosen based on the results from

the previous section. The setup follows the considerations in
section II-B. Due to the resolution of the selected images (768×
512 pixels), in order to be able to display three images side by
side on the screen, a Wide Quad High Definition (2560×1440)
monitor was used for the setups CE and SE. The resolution
for UE could not be controlled, but the resolution of the web
application was reported, as explained later.

For this experiment we increased the number of images in the
test set (extended data set) and used two encryption methods
(testset 1 and testset 2), again with 6 impairment steps for
a total of 182 images. Table I lists the various settings and
constraints of each experiment. The same number of observers
was used on testset 1 and 2 in each environment.

For the CE the following statistcics were additionally gath-
ered: Except 3 observers who had a 20/25 vision, all other
observers had at least a 20/20 acuity according to the Snellen
chart. Only one of these observers (with a 20/25 acuity) was
discarded during the outliers detection step. Three observers
had a red/green color deficiency (none were discarded).

1) Outlying Observers Detection: After running a subjec-
tive experiment, during the data analysis step, we inevitably
encounter discrepancies in the data. For a high number of
observers this will statistically even out, but for a smaller
number of observers outliers can significantly skew the results.
Therefore, it is best to remove outliers before drawing results
from the data gathered. We utilize the clustering outlier detec-
tion (dendrograms) as specified in Section II-C.

Table II shows the result of the clustering based outlier
detection for the three setups and Figure 5 illustrates the
clustering and outlier cutoff as dendrograms. Note that the
dendrogram for SE is not shown as there were no outliers for
these two experiments.

As can be seen in Figure 5 there is a significant variation in
the number of outlying observers regarding the various setups.



TABLE II
Distribution of observer difference and resulting

threshold zD and outliers for the three acquisition
environment experiments per testset.

Setup Testset µ σ zD

CE 1 4.21 2.00 10.21
CE 2 5.83 2.31 12.74
SE 1 4.21 1.63 9.11
SE 2 5.12 1.85 10.67
UE 1 3.31 1.46 7.69
UE 2 5.66 1.81 11.11

Testset 1 setup Testset 2
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Fig. 5. Dendrograms of the hierarchical clustering, outlier branches
are shown in red. Two testsets were evaluated for each environment.

This variation can be explained by the different populations
that were enrolled for the tests. The observers in the SE exper-
iment were computer scientists , a large part of the observer
pool was familiar with the chosen contents (Kodak database)
and quite familiar with the distortions as well. The observers
enrolled for the CE experiment were all naive observers from
biology and medical departments. For the UE experiment we
had returning observers from the CE and SE experiments but
also a large number of new observers.

A Note on the use of the MSE for outlier detection:
A simpler way to find outlying observations would be to just
count the number of missed detections. However, it is important
to note that in the context of outlying observers’ detection, no
matter if an observer makes very few mistakes or many, what
matters is the consistency. An observer making very few errors
(missed detection) but behaving differently from the panel (i.e.
detecting a pair recognized by no one else, or missing a very
obvious match) would have to be discarded from the analysis.

Figure 6 shows the MSE as a function of the number of errors
made by each observer. For every observer, and for each tested
image, we compute the MSE between the observer’s score
and the average for this image (average across all observers).
This gives us an idea if a given observer overall deviates a
lot from the average. As can be seen on this figure, the two
green spots represent two observers having a similar MSE,
which means their behavior is coherent, however, one made 90
misdetections, whereas the other one only made 60 mistakes
(unrecognized pairs). An opposite behavior is represented by

TABLE III
Agreement matrix between the acquisition environments
based on linear and Spearman rank order correlation.

(a) linear correlation
CE SE UE

CE 1.000 0.984 0.978
SE 0.984 1.000 0.978
UE 0.978 0.978 1.000

(b) rank order correlation
CE SE UE

CE 1.000 0.862 0.884
SE 0.862 1.000 0.888
UE 0.884 0.888 1.000

the two red spots. Both observers made the same amount of
missed detections while selecting the pairs of images (80 errors),
but their MSE significantly differs. None of these 4 observers
were detected as outliers by the dendrogram. In this figure, the
gray spots represent the outlying observers.

To recap, a similar number of errors does not mean agreement
and a dissimilar number of errors does not mean disagreement.
That is, the number of errors, and also derived statistics like
MSE, is a poor way of finding outliers.
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Fig. 6. MSE as a function of the number of missed detection
(recognition errors).

2) Analysis of Acquisition Environment: There are two ways
to look at the data.

We can look at the linear correlation between the data found,
basically if the same image has the same number of errors,
which is a representation of the recognizability.

Alternatively, we can look at the data from a perspective of
ordering the data from the least to most recognizable image by
using the errors. Then we look at the difference in ordering by
using a rank order correlation.

The results for both calculations are given in Table III. Both
methods agree on the outcome: the three environments are
strongly related but there are differences. The correlations,
linear as well as rank order, are comparable.

So overall all environments exhibit the same trend. This
suggests that the differences are caused by A) miss-clicks, and
B) the innate randomness in the recognizability study.

Another way to show the similarity of the results is to plot
them. For this we took an aggregate, minus outliers, of all
scores and ordered the images from most to least recognizable.
Then we plotted the scores from the different environments over
this domain. The result can be seen in Figure 7, the plot was
smoothed with a window size 5 average function to suppress an
extremely jagged appearance due to miss clicks by observers.
The recognition rate (RR) is the relative error over all observers
per image, an error is coded as 1 so a RR of 0 means all
observers recognized the image.

All experimental setups show a very similar curve and the
choice of environment does not seem to influence the results. All
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Fig. 7. Plot of individual scores, per environment, compared to the
overall ordering based on an aggregate over all environments.

versions show a gradient from recognizable to unrecognizable
and are trending towards the probability of random choice (pr).

Scaling and the Uncontrolled Environment: The web
application (UE) reported back the actual space used for the
browser window which was used to display the images. Only one
observer used a resolution of 1440p which meant an un-scaled
version of the images, the rest (40) used displays of various
(smaller) sizes.

From the reported resolutions we reconstruct the follow-
ing display sizes which were used (count in parenthesis):
2560x1440p (1), 1920x1200 (8), 1920x1080 (15), 1680x1050
(1), 1600x900 (3), 1400x900 (1), 1366x900 (6), 1280x1024 (1),
1280x768 (3), unknown (2). The unknown resolution were
probably from non-maximized browser windows so the actual
resolution could not be determined, however the resolution is
too small to display the 3×2 array of images without scaling.

IV. Conclusion
The following recommendations and remarks can be made

for the acquisition of the recognition threshold from observers.
The Match2 protocol is recommended since it gives a higher

error rate, allowing for a better differentiation between image
recognition than the other proposed protocols. As a side note:
a higher number of displayed images, i.e., more than the 6
recommended in Match2, might generate an even better result
in terms of error rate but would require the images to be smaller
(less detail visible) and increase viewing time to properly assess
the images (allowing for fewer images per session).

For the setup we found relatively little difference between
the tested environments. The UE setup in theory is fine, but
unlimited viewing time potentially leads to viewer fatigue after
fewer images, as the time per images can be longer. It should
be noted that the viewing time did not have an impact on the
results. A shorter viewing time allows for a larger number of
comparisons before viewer fatigue sets in, which would suggest
a semi-controlled environment, however the uncontrolled en-
vironment allows for parallel acquisition and allows to reach a
wider number of observers. The controlled environment did not
generate any real benefits and is therefore not suggested.

During our tests a short pre-test was run to show the partic-
ipants the range of image quality to expect and to familiarize
them to the use of the interface. It is suggested to extend
this test period to familiarize the observers with the distortion
types. A familiarity with the distortion types generates a more
consistent behaviour and less outliers as can be seen from the
SE vs. CE outlier numbers from bodies consisting almost en-
tirely of computer scientists and medical doctors respectively.
For outlier detection hierarchical clustering methods are rec-

ommended as proposed in opposition to direct error measures
(MSE).
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