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Abstract

This paper presents a new approach to measure tex-
ture directions and estimate illumination tilt angle of
3D surface textures by using mojette transform. Fea-
ture vectors are generated from variances of 72 mojette
transform projections with different projection angles.
The measured texture directions are compared with hu-
man perceptual judgement. Furthermore, we estimate
illumination tilt angles by minimizing the Euclidean dis-
tance of the feature vector between the test image and
the training sets. Experimental results show the effec-
tiveness and accuracy of our proposed approach.

1. Introduction

Texture analysis plays an important role in computer
vision and computer graphics. Direction of texture im-
age is a strong influence when people perceive a tex-
ture. Texture direction analysis is widely used to create
rotation invariant classifiers[7, 11, 3]. And many direc-
tion measurement methods have been proposed[6, 10],
which are only involved in 2D texture images. How-
ever, real-world textures are seldom ”flat” and nor-
mally comprise rough surface geometry and various re-
flectance properties, which can produce dramatic ef-
fects on the appearance of the sample surfaces under
varied illumination and viewing conditions[2]. Figure
1 shows two example images of a 3D surface texture-
a piece of wallpaper illuminated from two directions.
The difference is obvious. This presents challenges in
both computer vision and computer graphics. The di-
rectionality of the 3D surface may be weakened when

given an illumination from a direction which is simi-
lar with the surface’s intrinsic direction. This is illus-
trated in the right image in figure 1, the vertical texture
direction is remarkably weakened by the 90o illumina-
tion. It is therefore important to capture the character-
istics of 3D surface textures so that successive analy-
sis can be achieved. We investigate the directionality
measurement of the 3D surface textures in this paper.
Mojette transform, a discrete form of the Radon trans-
form, is used to capture the directional information of
surface images under different illumination conditions.
Furthermore, when given a novel image of one surface
under unknown illumination condition, we try to esti-
mate the tilt illumination angle.

Figure 1. Two images of a 3D surface tex-
ture illuminated from different directions.
The block arrows show the illumination
directions.

The outline of this paper is as follows: in section
2, we show our mojette transform manipulation on 3D
surface textures. Section 3 presents the directionality
measurement method. The illumination estimation is
presented in section 4. And we conclude our work in
Section 5.



2. Mojette transform on 3D surface textures

The Mojette transform[8] is an exact discrete Radon
transform [9] defined for specific projections angles
tanθ = q/p where (p, q) are both integer restricted to
q ≥ 0, p ∈ Z and with GCD(p, q) = 1. Each com-
ponent of a projection is called a bin, the value of this
latter being the sum of all the pixels crossed by the ap-
propriate projection line. The transform is defined for
each direction by the following Mp,q operator :

Mp,qf(k, l) =
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)∆(b+ qk − lp)

Where ∆(b) =
{

1 if b = 0
0 if b 6= 0 , and where the Mojette

transform MIf(k, l) is described as the set of I projec-
tions: MIf(k, l) = {Mpi,qif ; i ∈ 1, 2 · · · I}. The an-
gle restriction (compared to classical Radon transform)
leads both to a specific sampling on each projection
and to a number of bins (p, q) angle-dependent. In this
work, the Spline 0 Mojette transform is used [5], this
latter provides smoother projections, and demonstrated
a better efficiency for texture detection. Furthermore,
in order to get projections of similar bins amplitudes,
each projections goes through a normalization process.
Each bin is normalized by the number of crossed pix-
els, this number depends on the chosen projection an-
gle. Evidently, without this normalization process, the
projection variance, would strongly differ from one pro-
jection to another. Mojette transform, as well as Radon
transform, are widely used to analyze images[8] or to
estimate image(including texture) directions[7]. In [7],
second derivative of variance of each projection is used
to determine the texture direction, but this stands only
when the texture has a significant directionality. Direc-
tionality of texture is a psychological concept, differ-
ent people may perceive one same texture having dif-
ferent direction. This phenomena will be even worse
on 3D surface textures, since the illumination acts as
a direction filter[4]. We try to measure this problem
in a quantitative analysis. We exploit the PhoTex tex-
ture database [1] for experiments. Each texture is rep-
resented using 36 images captured under a variety of
different illumination conditions. The illumination an-
gle is denoted by a slant (zenith) angle a tilt (azimuth)
angle. There are three slant angles (45o, 60oand 75o).
Under each slant angle, there are 12 tilt angles (from 0o

to 330o with a step of 30o). In our experiments, we only
take the Ntilt = 12 images of different tilt angles un-
der slant angle of 45oas the surface image set, because
the change in slant angle introduces slight effect to the
directionality of the texture. For each image in one sur-
face set, we conduct Nproj = 72 mojette transform

projections with projection angle from 0oto 180o. And
then, we calculate the variance of each projection. This
means a Nproj-dimension column vector V is derived
from each image. After applying this process to each
image in one set, we can get a Nproj ×Ntilt matrix for
one surface image set, denoted as VM ∈ RNproj×Ntilt .
This matrix is used to measure the directionality and es-
timate tilt illumination angle in the following sections.
Figure 2 is an example of matrix VM of surface ”ace”
which has a strong vertical directionality.
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Figure 2. Mojette transform on one sur-
face set. (a) is a sample image of surface
”ace” with tilt angle of 0o. The block arrow
indicates the tilt illumination direction. (b)
is the scaled image representation of VM
matrix derived from surface ”ace” image
set. (c) is the 3D plot of VM .

3. Direction measurement

As illustrated in previous section, we can not mea-
sure the direction of a 3D surface texture just by one sin-
gle image. After calculating the matrix VM of each 3D



surface image set, we can analyze this matrix and draw
some conclusions about how the directionality changes
with projection directions and illumination directions.

It is obvious that the variance value of the mojette
projection peaks when the project direction is paral-
lel with the texture direction and reaches lowest point
when the project direction is orthogonal with the tex-
ture direction. This is an intrinsic characteristic of mo-
jette transform. Contrarily, the illumination acts the
other way round. The principal directional geometric
elements response strongly when given an orthogonal
illumination. A straightforward method is derived to
eliminate the influence that the illumination brings.

We sum up the matrix in each row to generate a
Nproj-dimensional vector VS ∈ RNproj :

VS i =
Ntilt∑
j=1

VMi,j i = 1 · · ·Nproj

For analytical convenience, we scaled this vector by di-
viding each element by

∑Nproj

i=1 VS i, so that the sum of
the vector elements equals to 1.

By cumulating the VM matrix in row, we can effec-
tively eliminate illumination influence to the direction-
ality. This is because that like in [7], we calculate the
second derivative of VS , denoted as V

′′

S . The principal
surface texture direction is at where the V

′′

S reaches its
minimum value. Figure 3 gives an example of the VS

and V
′′

S of surface ”ace” (sample image (a) in Figure 2).
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Figure 3. Plots of VS (1st row) and V
′′

S (2nd
row) of surface ”ace”

Since only a limited number of surfaces have such
strong directionality like ”ace”, some surfaces may have

several direction or no significant direction (isotropic)
from human’s perception view. We proposed a mea-
surement of the directionality of 3D surfaces. For each
V

′′

S , we set a threshold of 0.01, and the elements below
this threshold indicate the candidate directions of the
surface. The following are discussion about the number
of points below the threshold:

1.No elements. This means the surface is isotropic.
2.Only one. This means the surface has a strong prin-

cipal direction.
3.More than one. This means the surface has several

directions.
Experimental results and the measured directions are

shown in Figure 5.

4. Illumination estimation

Since the variances of mojette projections vary with
the illumination tilt angle, we intuitively take this vari-
ance vector of a given image under an unknown tilt illu-
mination as the feature vector to estimate its tilt illumi-
nation angle. Note that the VM is nearly symmetrical
in vertical, we only take six tilt angles for estimation(0o

to 150o). The detailed method is as follows.
All images in our experiments are of size 512× 512.

We divide all images to four quarters, and select two
(top-left and top-right) for experiments. The top-left
images compose our training set and the top-right im-
ages compose our testing set. The experiment is carried
on within the surface image set.

For all training image sets, we calculate the VM ma-
trix. When given a test image from the corresponding
test set, we calculate its variance vector V of mojette
projections. Then we compare the Euclidean distance
between the feature vector V and each column vector
in VM . The estimated tilt angle is then assigned to the
tilt angle of the image in the training set who has a min-
imum distance. Figure 4 shows the estimation accuracy
of nine surface textures.

5. Conclusion and future work

In this paper, we propose a novel work in direction
measurement and illumination estimation of 3D surface
textures by using mojette transform. Variances of mo-
jette projections on each image in a 3D surface set are
utilized to form a matrix and then to measure the sur-
face directionality. Furthermore, this matrix is used to
estimate the tilt illumination angle when given a sample
image of a surface texture. Experiments show the ef-
ficiency and accuracy of our proposed method. Future
work can be done in improving the accuracy of the illu-
mination estimation results and using whole tilt angles.
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Figure 4. Tilt illumination angle estimation
results

Furthermore, the work of 3D surface texture classifica-
tion with simultaneously illumination estimation can be
investigated by using mojette transform.
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Figure 5. Direction measurement result.
From left to right are sample image, image
show of corresponding VM matrix, plot of
VS , plot of V

′′

S and the measured tilt angle.


