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Abstract 

This paper describes an approach that, given an image of a rough surface texture, 

can estimate the direction from which the surface was lit. Unlike previous work, we 

require neither surface isotropy nor that the texture is included in the training set.  The 

approach is based on Active Basis and the Mojette transform. The Mojette transform is 

used to estimate the orientation of the texture; it does so by finding which training samples 

have similar orientation features. The Active Basis model is then learned from training 

images by the shared pursuit algorithm. Next, the base histograms of the test image and 

textures with similar orientation features in the training set are compared so that the 

illumination directions can be estimated by minimizing their correlation coefficients.  

Introduction 

Many visual textures are formed by rough surfaces. The appearance of these textures is 

affected by the direction from which they are lit—illumination can be modeled as a directional 



 2

filter [11]. Isotropic surface textures will form directional textures whose directionality is aligned 

with the lighting vector. For anisotropic surfaces the situation is more complex: the illumination 

will either accentuate or attenuate the underlying surface directionality and the directionality of 

the resulting image will depend on both illumination and surface directionality. Estimating the 

direction from which a rough surface is lit is an important task. Most work has assumed the 

surface texture is isotropic; this paper addresses the more difficult task of estimating the 

illumination direction for anisotropic surfaces. 

 

(a) 

 

(b) 

Fig.1. (a) Definition of texture direction and illumination direction. (b) Two images of a 3D surface texture 
illuminated from different directions. The block arrows show the illuminant directions. 
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When an anisotropic texture is lit from a given direction, surface bumps that are oriented 

towards the light become brighter and form edge-like structures, Fig.1. Our approach uses these 

structures to account for the surface directionality and to estimate the direction of the light 

source.   

Recently, Wu et al. [1] proposed an active basis model for learning deformable templates 

from image patches of various object categories. The technique has been used for object 

detection and recognition [2,3]. An active basis consists of a small number of Gabor wavelet 

elements at different locations and orientations. These elements are generated from training 

images by finding the maximum responses of Gabor filters and essentially form the “sketch” of 

the training samples. The elements are also allowed to slightly perturb their locations and 

orientations, so that they can be well combined to represent each individual training or testing 

example. When a surface texture is anisotropic, due to the strong response between surface 

structures and the light, “edge” information containing implicit illumination directions can be 

accurately modeled by active basis. Once we capture this information, we can easily estimate the 

illumination direction with the Active Basis model.  

To implement the method, the Mojette transform is employed to measure the orientations 

of surface texture images. In the context of this paper, we use the term “texture orientation”  to 

refer to as the angle of the predominant direction or directional trend of texture patterns. As in 

literature [13, 21], we also use the term “texture direction”.  Our method consists of two stages: 

the texture direction is first estimated by applying the Mojette transform to the image. Texture 

direction features derived from the Mojette transform are then used to find textures with similar 

orientations to the test one. Then the Active Basis model is employed to extract illumination 

direction features. The Active Basis model can be learned from training image patches by the 
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shared pursuit algorithm [4].  For a test texture, the histogram of its active basis is compared with 

those of the training models, and the illumination direction of the test texture is determined by 

the sample with the most similar histogram. The scheme of our algorithm is illustrated in Fig.2. 

 

Fig.2. Flowchart of the proposed method 

Our contribution in this paper is a method that is able to estimate illuminant’s azimuthal 

angles from an image of a surface texture. The method is based on active basis and the Mojette 

transform, and the test sample is not required to be included in the training set. 

In the next section, we review previous works in the area of illumination estimation and 

texture direction measurement. Section 3 describes the orientation estimation using Mojette 

transform on 3D anisotropic surface texture. Next, in section 4 we present in details the Active 

Basis model and the estimation of illumination directions. The results produced by our method 

are presented in section 5. Finally, in section 6 we draw our conclusions and discuss limitations 

and future works. 

Previous Work 

Estimating the direction of illumination 
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Early studies on illumination direction estimation [5,6] were based on techniques from Shape 

from Shading. Severe constraints had to be imposed in order to find a reasonable solution [7, 8]. 

Koenderink and Pont [7] developed a theory based on second order statistics for estimating the 

illuminant’s azimuth from a single image formed under the Lambertian model. Their algorithm 

imposes several restrictions: the tested surface has to be isotropic, Gaussian and have constant 

albedo. 

Varma and Zisserman [8] extended this method to deal with surfaces having a spatially 

varying albedo. Although this approach could recover the azimuthal angle more accurately, this 

estimation mechanism failed for strongly anisotropic surfaces. 

Karlsson et al. [9] presented a theory of combining both the gradient-based and the 

Hessian-based tensors to estimate illumination directions when dealing with the case of small 

amounts of surface anisotropy. They tested their theoretical predictions on computer-rendered 

Gaussian surfaces. As a result, estimates were accurate if the parameters are close to their 

assumed values. With the real world textures in [10], due to the non-Lambertian, higher-relief, 

oblique viewing or image noise, error was amplified by the multiplicative factors introduced in 

the theory. This gave rise to more unstable estimation with an average error of 17.2° [9]. 

Chantler et al. [11,12] proposed an approach to identify illuminant direction and classify 

textures. A probabilistic model was developed using an existing model of the dependency of 

texture features on lighting directions. The most likely illumination vector could be estimated by 

optimizing the model. The technique accurately estimates the azimuth of the light source. 

However, it does require more training and computation than a conventional classifier. 

Measuring the Direction of Visual Textures 



 6

The Radon transform was used by Jafari-Khouzani and Soltanian-Zadeh [13] to detect the 

principal directions of the texture. They considered that the variance of the projection presents a 

local maximum at the principal orientations. In practice, the method is unsuitable for complex 

textures, e.g. textures having straight lines along several directions. 

Jia et al. [14] later introduced the Mojette transform to estimate texture directions. They 

performed Mojette transform on a set of textures lit from different tilt angles. Unlike [13], a 

threshold is defined to provide the candidate orientations for complex textures which may have 

several directions. They also estimated the illumination tilt angle with the variances of Mojette 

projections. However, the algorithm can only estimate illumination directions of textures 

included in the training image sets. In this paper, both the texture orientation and the illumination 

direction are estimated from the model. 

In this paper we address the problem of estimating the illuminant’s azimuthal angles from 

images of anisotropic textured surfaces. We can estimate the illumination direction of a texture 

which is not included in the training data set but which has a similar orientation to a sample in 

the training set. Finally, if no similar texture exists within the training set, our model can provide 

the detected main orientation(s).  In this case, the illumination direction of the test texture can 

also be predicted.  

Texture Direction Estimation 

We use the Mojette transform to compute the texture directions, which is a clue for 

illumination estimation. Unlike previous work on estimating 2D texture orientations in [13], we 

determine the texture directions by using the Mojette transform, which is an exact and discrete 

form of Radon transform [15] defined for specific projection angles. This scheme can be 

effectively integrated in the later stage to estimate illumination directions of 3D surface textures.  



 7

Mojette Transform 

Due to its simple mathematical framework, the Mojette transform is widely used in 

images analysis [16,17]. Like the classical Radon transform, the Mojette transform represents the 

image as a set of projections (as few as 1 depending on the angle set). However, the Mojette 

transform has an exact inverse from a finite number of discrete projections. The rational 

projection angles are defined by a set of discrete vectors (pi, qi )  as θi = tan−1(qi / pi ) . These 

vector must respect the condition that pi  and qi  are coprime (i.e. gcd(pi, qi ) =1), and since it is 

ʌ-periodic, qi  must be positive except if (pi, qi ) = (1, 0) . The transform domain of an image is a 

set of projections where each element (called a “bin” as in tomography) corresponds to the sum 

of the pixels centered on the line of projection. The “Dirac” Mojette transform is defined for 

each projection angle by the operator:  

Μδ f[ ] b, p, q( ) = proj
δ p,q

b( ) = f k, l( )∆ b + kq − pl( )
l=−∞

+∞

¦
k=−∞

+∞

¦  

 M p,q f (k, l) = f (k, l)∆(b + qk − lp)
l=−∞

+∞

¦
k=−∞

+∞

¦  (1) 

where (k, l) defines the location of an image pixel, b is the index of the bin on a given (p, q)   

projection and  is the Kronecker Dirac function equal to 1 when n = 0 and zero otherwise, 

or, in other words, ∆ n( ) =
1 if n = 0

0 if n ≠ 0

­

®
°

¯
°

. The equation b = −kq + pl  represents the line of 

projection (the set of projected pixels). Thus, ∆ b − kq + pl( )  is equal to 1 only for those pixels.  

The Mojette transform, MI f (k, l)  corresponds to the set of I  projections as 
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MI f (k, l) = M pi ,qi
f ;i ∈1,2...I{ } . The number of bins, Bi , for each projection depends on the 

chosen direction vector (pi, qi ), and for a P ×Q  image is found as  

 Bi = (Q −1) pi + (P −1)qi +1 (2) 

The “Dirac” Mojette transform described above, considers each pixel as a Kronecker 

Dirac function, however, in the following, the “Haar” Mojette transform was used. The “Haar” 

Mojette transform (sometimes named spline 0 Mojette transform) considers every pixel as a unit 

square, and basically computes a convolution on the projections; the convolution kernel depends 

on the projection angle. This gives some advantages over the simple Dirac Mojette Transform. 

Interested readers should refer to [19] for details on the Haar Mojette transform.  

 

 

Fig. 3.Mojette transform of a 3×3 example image. 

Fig. 3 shows the Dirac Mojette Transform for a 3×3 image and for the set of directions 

S = −1,1( ), 1,1( ), 0,1( ){ }  giving 13 bins. The algorithmic complexity of the Mojette transform for 

an image with projections is O(PQI ) . 

Texture Direction Estimation 
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We use the Mojette transform to detect directional trends in 3D surface texture images. 

The principal direction of a surface texture can be roughly described as the direction along which 

there are more approximately straight lines. The Mojette transform along this direction usually 

has larger variations. Therefore, the variance of the projection at this direction is the local 

maximum [13,14]. Fig. 4 below shows the Mojette projections for two distinct textures. The top 

panel (Fig. 4(a)) depicts 7 Mojette projections (corresponding to the angles: 0°, 23°, 45°, 75°, 

90°, 135°, and 172°) for the texture “acd” of the PhoTex database. This texture exhibits two main 

orientations (0° and 90°); as we can see from this figure, the Mojette projections for these two 

orientations present the highest variations.  

On the center panel (Fig. 4(b)), the same figure is given for an isotropic texture (Texture 

“aap” from the PhoTex database). For such a scenario, we can notice that all projections present 

a quite noisy but flat distribution with significantly lower variances. Finally, the lower panel 

(Fig. 4(c)) represents the input images (“acd” and “aap”) along with their Radon sinograms, in 

order to clearly show the different representations between the Mojette transform and the Radon 

transform.  

 

(a) 
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(b) 

 

 (c) 

Fig. 4. Some examples of Mojette projections on two texture images, as well as the Radon sinogram. 

 

For each image in one surface set, we compute Nproj = 72  Mojette projections with 

projection angle from 0° to 180°. Then we calculate the variance of each projection. A N proj -

dimension column vector V is derived from each image. 

As discussed before, it is obvious that the variance of the Mojette projection reaches its 

peaks when the projection direction is parallel to the texture orientation and is lower for other 

texture orientations. 
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We first normalize the variance with respect to the number of projection bins, as they are 

different across different projection angles. Then the variance vector is normalized by dividing 

each element by Vi
i=1

N proj

¦ . As in [13], we calculate the second derivative of V, denoted as V". The 

principal surface texture direction is detected when V" reaches its minimum value. Fig. 5 shows 

two example sets of vectors V and V" of surface textures labeled as “acd” and “ace” from the 

PhoTex database [10]. The x-axis being the orientation angle of the Mojette projection, and the 

y-axis respectively stands for V (second column) and V" (third column).  

With vector V", the directional similarity between two texture images can be calculated. 

Our goal is to estimate the illumination direction of a given texture; however, literature shows 

that it is difficult to accurately obtain this information from a single image [8].  We therefore 

employ a training set of texture samples captured under known illumination directions. We first 

find a set of textures having similar orientations as the input test image by comparing the Mojette 

transform vectors V", and then we can estimate its illumination direction by matching 

illumination features, i.e. the histograms of the active basis, between the test image and the 

images with similar orientation in the training set. However, the novel point of this paper is that 

even if the test surface texture is not included in the training data, we can still obtain similar 

texture directions by comparing V" between test and training images. We can then use the 

training samples with similar texture directions to estimate the illumination direction of the test 

surface. Experimental results and estimated directions are shown in section 5.  

It should be noted that if there is no training or testing datasets, the model can simply 

output main texture orientations for every given image. 
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Fig. 5. Plots of V (middle column) and V" (right column) of surface “ace” (left-top) and “acd” (left-bottom). 
The plot of V" shows that 90° is the main orientation of surface “ace”, whereas 0° and 90° are the main 

orientations of surface “acd”. 

Illumination Direction Estimation 

Given a test image with an unknown illumination direction, we first calculate its texture 

orientation vector with the Mojette transform. The orientation vector is then used to find textures 

having similar orientations to the test sample.  Then, active basis features are extracted so that 

the base histograms can be compared for estimating illumination directions of the test image. 

This section describes in details the Active Basis model learning and illumination direction 

estimation.  

Feature Extraction for Active Basis 

Wu et al. [1] proposed the Active Basis model for deformable templates to share 

sketches, where each sketch is allowed to shift in position and orientation. An active basis 

consists of a small number of Gabor wavelet elements at different locations and orientations, and 

these elements are allowed to slightly perturb their locations and orientations before they are 

linearly combined to generate each individual training or testing example. For example, if we can 

learn an active base model for a certain car from a set of images, we may use the active basis to 
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model other cars by varying the basis’ locations and orientations. The model learning procedure 

will be described in more details in the next section. 

However, the Gabor filters employed by the original algorithm for extracting objects’ 

features can be computationally very expensive. Instead, we use the Haar feature to improve 

efficiency. Unlike the convolution with Gabor filter, these rectangle features can be computed 

very rapidly using an intermediate representation for the image, called the integral image [18]. 

Haar features are composed of two or more regions, which have the same size and shape 

and are horizontally or vertically adjacent. It is defined as: 

featureI = ωi RecSum
i∈I= 1,...,N{ }
¦ ri( )  (3) 

where (1,…,N) denote the number of rectangles that feature I comprises, and ωi  is the weight 

value of the ith rectangle. RecSum ri( )is the sum of all pixels within the ith rectangle. 

In this paper, we expand the Haar features to a set of Active Haar features and improved 

edge features. Suppose N is the number of the orientation that the edge features represent; the 

orientation of edge features takes N equally spaced angles in [0, ʌ]. Fig. 6 shows our improved 

Active Haar with N = 15. The features represented with Active Haar are then employed for 

training models in the following section.  

 

Fig. 6.Improved Active Haar with N = 15. 

Model Training 

In [4], Wu et al. developed an active sketch algorithm which can learn an object template 

with very intuitive sketches from image patches of various object categories. The algorithm 
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selects the elements of the active basis sequentially from a dictionary of Gabor wavelets. When 

an element is selected at each step, a perturbed version of this element is added to improve the 

encoding of each example. Our model training process can be seen as a variation of the original 

model. Since each surface texture is represented by multiple images captured under different 

illumination directions, we generate the active basis model for each image separately and all 

bases forms the final model. Fig. 7 shows the base models of texture “abj” in [10]. The whole 

process comprises the following three steps: 

 (1) For each image, compute the Haar response Bm,i for each base;  

(2) Select an active base according to the shared sketch algorithm [1]. The general idea is 

to allow the Active base Bi  to shift its location along its normal direction and also allow it to 

shift its orientation to minimize I − ciBi
i=1

n

¦ , where Bi  can be expressed as 

 Bi = Bxi ,yi ,s,αi
, i =1,...,n (4) 

 

xi = xi +δi sinαi,
yi = yi +δi cosαi,

αi = αi +γ i

δi ∈ −b1, b1[ ],γ i ∈ −b2, b2[ ]

 (5)                         

Where n  is the number of Active Haar, xi, yi( )  is the base location coordinate, αi  is the base 

angle, and b1, b2[ ] are the range for allowed translation and rotation; 

 (3) iterate step (2), until a fixed number of bases are selected.  
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Fig. 7. The base model for texture “abj” with the illumination tilt angle of 0. Left: the original sample; Right: 
the extracted base model. The number of orientations in the Haar feature is 9 and the basis number is 

100. 

After applying this process to each image, we can generate a base model. Then we 

calculate a base histogram of each image by counting how many times each orientation of base 

has been selected within the corresponding model. Fig. 8 shows the models and base histograms 

of texture “acd” from the PhoTex texture database [10]. 

Previous work in the literature has shown that “edge count” can be used for texture 

direction analysis and texture classification; some theoretical analysis is also provided in [20]. 

Active basis can indeed capture the “edge” information in a texture and has the advantage that 

the direction of edges can also be obtained. Thus, the histogram of active basis can be effectively 

used for modeling textures with same illumination azimuthal angles, as different angles can 

dramatically change the appearance of 3D surface texture [11]. This can be clearly seen in Fig. 8. 

Texture images in the same class captured under different illumination angles have different base 

histograms. However, when illuminated under same illumination azimuthal angles, these textures 

tend to produce similar base histograms. Thus, we can estimate the illumination direction of a 3D 

surface texture by examining similarities between base histograms. 
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Fig. 8.The base models and histograms of texture “acd” [10]. The texture images are the patches of Label 
“acd” taken at illumination zenithal angles of ı and azimuthal angles of Ĳ (indicated by block arrows). 

 

Estimating Illumination Directions 

Once a set of texture samples having the most similar texture orientation to the test 

sample are found, we estimate the illumination direction by finding the best match based on the 

correlation coefficients of active base histograms. The correlation coefficient between base 

histograms is defined as  

                                 corrcoef (X,Y ) =
Xi − X( ) Yi −Y( )

i=1

N

¦

Xi − X( )
i=1

N

¦ Yi −Y( )
i=1

N

¦
                                    (6) 

     
Where X is the histogram vector of the test image, Y is the histogram vector of a training image, 

and N is the number of Haar orientations.  

The illumination direction of the test texture is determined by the sample whose base 

histogram has the largest correlation coefficient to the test one.   Euclidean distance was also 
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tested to measure the similarities between histograms, but it exhibited lower performances. In the 

next section, we provide a comparison of the accuracy for both the Euclidean distance and the 

correlation coefficient. 

Experimental Results 

The main goal of the proposed method is to correctly estimate illuminated directions 

using textures in the database. The Mojette transform is used to compute the texture orientations, 

according to which the base model will then be compared so that the illumination direction can 

be determined. We first show the performances of the Mojette transform on estimating texture 

orientations and then present the illumination estimation results. 

Results of Estimating Texture Orientations 

We first evaluate the Mojette transform on estimating texture orientations. We use a data 

set consisting of 15 surface textures of size 512×512 from the PhoTex texture database [10], 

which will be used in later experiments for estimating illumination direction. We did not select 

the Brodaz database in our experiments, because there is no known illumination information 

available. 

 The experiments are designed as described in [13]. Each texture image is divided into four 

256×256 non-overlapping regions. To create the test set, each 256×256 region was rotated at 

angles 10º to 160º with 10º increments and from each rotated image one 128×128 subimage was 

selected. With this approach, we created a total number of 960 (15×4×16) images for the testing 

set.  

We then calculate the Mojette projections for angles 0° to 180° with 2.5° increments and 

then threshold the second-order derivative vector V" to determine the texture orientation.  The 
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error is defined as the difference between the estimated orientations of each two successive 

rotated textures (which are supposed to be 10°) minus 10.  Fig. 9 shows the error mean and 

squared root of mean square (SRMS) error of the direction estimation for each texture in the 

testing set. The comparison with results in [13] is also shown in Fig. 9. It can be seen that our 

method for estimating texture orientations using the Mojette transform outperforms traditional 

methods based on the Radon transform in [13].   

 

Fig. 9.Comparison of performance of our method and the one in [13] for texture orientation estimation. 
 

Although our approach is proposed for estimating anisotropic texture orientations and 

illumination directions, which are difficult subjects for previous methods [8], we also perform an 

experiment to verify the performance of the Mojette Transform on isotropic textures. We have 

witnessed on Fig. 4 that the Mojette projections have a significantly lower variance for an 

isotropic texture (Fig. 4(b)) than for a anisotropic texture (Fig. 4(a)). However, in the following 
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experiment we are interested in studying the behavior of the proposed method for a locally 

oriented texture, such as a circular pattern. For such locally oriented textures, the Mojette 

transform may exhibit some flat projections. Fig. 10 shows an example. In this experiment, 12 

image blocks with size of 64x64 in different directions are selected. The Mojette Transform was 

computed within every block and the variance of the projections at different angles on each 

block was calculated. The results clearly show that for every image block there is a strong peak 

(corresponding to texture orientation), whereas the projection variance of the whole texture has 

no obvious peak and our model outputs “no direction”. This is exactly the same as what human 

observers can perceive.  

 

               (a)                                                                                   (b) 

Fig. 10.(a) The variance of projections at different angles on each block. (b)The variance of all projections 
on the whole image is also shown for comparison. 

 

Results of Estimating Illumination Directions 

The proposed method can not only estimate the illumination direction of a texture in the 

training data set, but also those with similar texture orientations yet excluded from the training 

set. We compare the Euclidean distances between vector V" to measure the similarity of the 
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orientations between textures. Then we can compare the base histograms of the pair with the 

most similar for illumination direction estimation.   

In our experiment, we exploit the PhoTex texture database [10], which contains many 

sample textures. Each texture is represented using 36 images captured under a variety of 

different illumination conditions. The illumination angle is denoted by a slant (zenith) angle and 

a tilt (azimuth) angle. We select 15 texture images from the PhoTex texture database [10] for our 

experiments. Each image has been imaged under zenithal angles of 45 and 60, with azimuth 

varying between 0° and 150°. The size of all images is 512×512. We divided each texture image 

into four 256×256 quarters: one is used to compose the training set, while the other three 

compose the test set. Fig. 11 shows one image of each sample we used in the experiment. 

 

Fig. 11.15 Surface textures within the PhoTex texture database [10]. 
 

We demonstrate the effectiveness of the proposed approach in two groups of 

experiments. In the first group of experiments, all textures are used to assess how well the 

method can identify the texture directions and estimate the illumination for a test sample whose 

texture class is included in the training set. We first test how the parameters used for learning 

active bases can affect the final estimation accuracy.  We used different combination of three 

parameters, i.e. the number of orientations (N), the size of Haar feature (haarSize) and the 
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number of bases (baseNumber). Fig. 12 shows the results. It can be seen that the most accurate 

estimation result is obtained when using N=12, harrSize=13×13, and baseNumber=300. The 

figure also provides a comparison of the performances between the Euclidean distance and the 

correlation coefficients. The correlation coefficient outperforms the Euclidean distance in this 

case.  

 

Fig. 12.Comparison of the accuracy of illumination direction estimation based different similarity metrics 
(correlation coefficients and Euclidean distance) and different combinations of parameters used in Haar 

functions. On the x-axis:  a: N=12, haarSize=9x9, baseNumber=200; b: N=12, haarSize=9x9, 
baseNumber=300; c:N=12, haarSize=13x13, baseNumber =300; d:N=15, haarSize=9x9, baseNumber 

=200; e:N=15, haarSize=9x9, baseNumber =400; f:N=15, haarSize=13x13, baseNumber r=300. 
 

The threshold, determining how many textures with similar Mojette projection vectors to 

the test sample should be used for comparing active base histogram, can also affect the 

estimation accuracy. In our experiments, we have tested a number of values using the closest 

distance to the test sample’s V" as the metric. From Fig. 13, a threshold of 146 appears to give 

the best result. In this case, we also used the best parameter combination for Haar features, i.e. 

N=12, harrSize=13×13, and baseNumber=300.  
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Fig. 13.Comparison of different thresholds of the number of textures used for comparing base histogram. 
The x-axis represents the number of textures that have similar Mojette projection feature vector V’’ to that 

of the test sample. 
 

 

Fig. 14.The accuracy of illumination direction estimation for each texture class when N=12, 
haarSize=13×13 and baseNumber =300 are used for learning active basis. 

Fig. 14 shows the accuracy of illumination direction estimation when the best 

combination of parameters is used for obtaining active basis. It can be seen that texture “adh” 

produced the worst result. This is because texture “adh” consists of green beans (see Fig. 11) and 

the surface height has large variations. They lead to large area of cast shadows when illumination 
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directions are changed. Since shadows are dark and make normal pixel values become smaller, 

varying illumination directions does not change the texture appearances as normal.  Accordingly 

the accuracy of illumination direction estimation is reduced.  

While the first group of experiments shows that our method can be effectively used to 

estimate the illumination direction of a test sample whose texture class is included in the training 

set, we also wish to know the performance of our method in the case that the test texture class is 

not included in the training set. This is also a novel point in the paper, as traditional methods in 

the literature did not consider this case. Thus, we carry out the second group of experiments, 

which is based on a “leaving-one-out” strategy.  Among 15 surface textures showed in Fig. 15, 

we always use one texture as the test while the remaining ones are treated as the training set. We 

first utilize the Mojette transform to obtain the orientations of test image. Then the base 

histogram of the test image is compared with the surface texture having the most similar texture 

orientations in the training set.  

In this experiment, for texture images with a size of 512×512, we used a size of 13×13 

for the Haar function and fixed a total number of 400 bases for the active sketch algorithm. The 

orientation takes N = 12 equally spaced angles in [0, ʌ]. The shift along the normal direction is 

{í2, 0, 2} pixels. The shift of orientation is {í1, 0, 1} angles out of 9 angles. 
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Fig. 15. The accuracy of illumination direction estimation when a test texture class is not included in the 
training set. 
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Fig. 16.Examples of illumination direction estimation results. From left to right are: the test images, their 
texture orientations, the base histograms, the training images, along with their texture orientations, their 

base histograms and the estimated direction. 
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Fig. 15 shows the estimation accuracy. Texture “adh” and “afb” produced the worst 

result, and we can also see that the textures that are not similar to any other in the training set 

produced relatively low results. However, the method can correctly estimate the illumination 

directions of some textures that have similar orientations with those in the training set. Though 

the data set is limited, the illumination of the test image can be effectively estimated once a 

number of textures with similar orientations are found in the database.  Fig. 16 shows the 

examples of matched Mojette projection features and base histograms.  

Compared with the method proposed in [12], a significant difference between the two 

methods is that our approach can estimate illumination directions of a texture that is not included 

in the training set, while the one in [12] cannot.  Even in the case of test textures that are 

included in the training set, the estimation accuracy of our method is 80.3%, while the one of the 

method [12] is 76% within 5 degrees of error value and 82% within 10 degree of error value.  

Thus, our method does have advantage over the one in [12]. 

 

Conclusions 

We introduced a new method for estimating illumination directions of 3D surface 

textures. In this study, the sample texture directions are first estimated using Mojette transform, 

and then the Active Basis method is employed to extract texture features and generate a base 

model, from which the base histograms are computed. Finally, the histogram of the learned 

model is compared with those of the textures having the most similar texture orientations in the 

training data set. The proposed method is tested using a variety of 3D surface textures and the 

experiments produced convincing results. Differing from previous works, the illumination 

direction of a test texture that is not included in the training set can also be estimated. 
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It should be noted that the illumination directions of certain surface textures has not been 

effectively estimated in our experiments. For some anisotropic surfaces, when the illumination 

direction is aligned with the surface orientation (e.g., at the angle of 120° for texture “acc” and 

“aba”,  90° for “abk”, angles of 0° and 90° for “acd” and “acf”), the estimation error tends to be 

larger. This error is most probably due to the weak response of the structure texture to certain 

illuminations directions. For the Mojette transform, in practice, the angular energy distribution 

may change significantly in a single texture. Therefore, it is not always reliable to find the 

dominant orientation using the contributions of all frequencies. Future work may further 

investigate other features based on active basis and relevant similarity measurements to improve 

the estimation accuracy.  
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