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Perceptual DFT watermarking with improved
detection and robustness to geometrical distortions

Matthieu Urvoy, Dalila Goudia, Florent Autrusseau

Abstract—More than ever, the growing amount of exchanged
digital contents calls for efficient and practical techniques to
protect intellectual property rights. During the past two decades,
watermarking techniques have been proposed to embed and
detect information within these contents, with four key require-
ments at hand: robustness, security, capacity and invisibility. So
far, researchers mostly focused on the first three, but seldom
addressed the invisibility from a perceptual perspective and
instead mostly relied on objective quality metrics.

In this paper, a novel DFT watermarking scheme featuring
perceptually-optimal visibility versus robustness is proposed. The
watermark, a noise-like square patch of coefficients, is embedded
by substitution within the Fourier domain; the amplitude compo-
nent adjusts the watermark strength, and the phase component
holds the information. A perceptual model of the Human Visual
System (HVS) based on the Contrast Sensitivity Function (CSF)
and a local contrast pooling is used to determine the optimal
strength at which the mark reaches the visibility threshold.

A novel blind detection method is proposed to assess the
presence of the watermark. The proposed approach exhibits
high robustness to various kind of attacks, including geometrical
distortions. Experimental results show that the robustness of
the proposed method is globally slightly better than state-of-
the-art. A comparative study was conducted at the visibility
threshold (from subjective data) and showed that the obtained
performances are more stable across various kinds of contents.

Index Terms—Watermarking, visibility, robustness, contrast
sensitivity, Fourier, subjective experiment, Grubbs’ test

I. INTRODUCTION

FACING the ever-growing quantity of digital documents
transmitted over the internet, it is more than ever nec-

essary for efficient and practical data hiding techniques to
be designed in order to protect intellectual property rights.
Watermarking is one such technique and has been extensively
studied for the past two decades; applied to still images, it
comes down to embedding an invisible information, called
watermark, that can be retrieved and matched even when the
watermarked image was attacked to some degree.

Four key requirements have been driving researchers in
designing watermarking algorithms: the invisibility, the ro-
bustness, the capacity and the security. Any watermarking
algorithm should ideally provide the best tradeoff between
these four aspects. Lately, security has been widely studied
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[1]; as for the invisibility, the robustness and the capacity, they
influence each other and often must be addressed together.
For instance, when the robustness is increased, the perceptual
quality of the watermarked image inevitably decreases.

Yet, few works address the problem of invisibility from
a perceptual perspective. Watson’s visual models [2], [3],
in particular, have been used to compute Just Noticeable
Differences (JND) masks, thus providing a perceptual model
of the visibility of the watermark [4], [5] which was embedded
either in the Discrete Cosine Transform (DCT) or the Discrete
Wavelet Transform (DWT) domains. More recently, another
Human Visual System (HVS) model was used for DWT
embedding [6]. Some of these methods are non-blind [4]
or require side information to be transmitted in order to
reconstruct the JND mask at the receiver [5], [6]. Some other
perceptual methods are fully blind but they use heuristics
instead of HVS models to derive JND masks [7], [8], [9].

Alternatively, some approaches based on statistical Objec-
tive Quality Metrics (OQMs) tune the embedding strength
based on the computed quality score [10], [11] and do not
require any side information at the receiver either. However,
two main problems emerge: these metrics often provide wrong
estimates of the perceived quality; more importantly, OQMs
provide a continuous quality scale and were not intended
to scenarios, such as watermarking, targeting the visibility
threshold. In practice, the only reliable way to assess the
invisibility is to conduct a subjective experiment in which
observers are asked whether they can notice the watermark
or not. In addition, most comparisons between watermarking
techniques found in the literature are also based on OQMs –
most often the Peak Signal to Noise Ratio (PSNR) – which,
as will be shown in this paper, can be misleading.

Besides invisibility, the robustness is also a key aspect
in watermarking. None of the aforementioned techniques are
robust to common attacks such as geometrical distortions: they
cannot efficiently withstand their desynchronization effects.
Rotation-Scale-Translation (RST) invariant techniques have
been proposed to address this issue through the use of appro-
priate transform domains. In [12], the watermark is embedded
in the Fourier-Mellin domain, to the cost of an important
algorithmic complexity. Later, in [13], log-polar mapping of
the Fourier domain is used to make the watermark robust
against RST attacks. Another log-polar Fourier embedding
technique is proposed in [14]. Besides these log-polar mapping
techniques – that commonly exhibit an important computa-
tional load –, some directly embed the watermark within the
modulus of the Discrete Fourier Transform (DFT). In [15],
the watermark is made rotation invariant thanks to its circular
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shape. A similar technique is proposed in [16] where circular
dots are embedded in the Fourier transformed coefficients.

The success of a watermarking algorithm not only depends
on its embedding strategy, but also on its detection strategy. In
particular, properly estimating the optimal detection threshold
is crucial and thus has been extensively studied. Usually,
the problem is stated in terms of two hypotheses H1 and
H0, which respectively denote scenarios with and without
embedded watermark in the considered host content. In [17],
[18], statistical models for the signal and the watermark
are used to derive a theoretical threshold. Typically, these
are Gaussian or binomial models; the threshold is chosen
so as to limit the probability of false detections. However,
the statistics of both the watermark and the host image are
likely to change with various parameters (e.g. watermark size,
embedded message, etc), thus impacting the parameters of the
fitted models, which in turn requires for the detection threshold
to be re-evaluated. Moreover, if the statistics of both the host
image and the watermark do not quite strictly fit the derived
models, the obtained threshold is likely not to be optimal.

In this work, a robust, blind, substitutive and perceptual
watermarking technique is proposed. Various characteristics
of the HVS are used to determine and adjust the visibility
level of the embedded watermark, thus resulting in an optimal
invisibility versus robustness tradeoff. The proposed technique
is designed to be robust against various kinds of attacks
(including geometrical distortions). In addition, a subjective
experiment is conducted in order to assess the invisibility
of the watermark. Finally, the proposed detection strategy is
efficient and adapts to the statistics of the watermark.

II. OVERVIEW OF THE CONTRIBUTION

Similarly to [15], [16], it is proposed to embed the water-
mark in the Fourier domain; the magnitude is used to control
the energy of the watermark while the phase is used to hold its
information. For best robustness, the watermarked coefficients
are grouped into two symmetrical square patches, which can be
expressed as a sum of sinewaves. Once displayed, this results
in a combination of sine gratings at various visual frequencies
and orientations: a perceptual model is used to adjust their
amplitude at the visibility threshold. The watermarked image is
then obtained by inverse Fourier transform. Sec. III describes
the perceptual model, then Sec. IV focuses on the embedding
process. Sec. V details the detection process.

The proposed method is designed to be robust against
multiple kinds of attacks. Sec. VI investigates the robustness
of the proposed method in comparison to [15] and [16]. Sec.
VII reports the results of a subjective experiment assessing
the visibility of the watermark Sec. VIII then re-evaluate the
robustness when the strength has been adjusted according to
the observers feedback. Finally, Sec. IX validates the proposed
approach in the context of low quality Print & Scan (P&S).

III. REACHING THE VISIBILITY THRESHOLD

Choosing the appropriate watermark strength is a delicate
but crucial step while designing a watermarking technique.
Over-estimations of the strength are likely to result in visible
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an important computational load –, some directly embed
the watermark within the modulus of the Discrete Fourier
Transform (DFT). In [11], the watermark is made rotation
invariant thanks to its circular shape. A similar technique is
proposed in [12] where circular dots are embedded in the
Fourier transformed coefficients.

The success of a watermarking algorithm not only depends
on its embedding strategy, but also on its detection strategy. In
particular, properly estimating the optimal detection threshold
is crucial and thus has been extensively studied. Usually,
the problem is stated in terms of two hypotheses H1 and
H0, which respectively denote scenarios with and without
embedded watermark in the considered host content. In [13],
[14], statistical models for the signal and the watermark
are used to derive a theoretical threshold. Typically, these
are Gaussian or binomial models; the threshold is chosen
so as to limit the probability of false detections. However,
the statistics of both the watermark and the host image are
likely to change with various parameters (e.g. watermark size,
embedded message, etc), thus impacting the parameters of the
fitted models, which in turn requires for the detection threshold
to be re-evaluated. Moreover, if the statistics of both the host
image and the watermark do not quite strictly fit the derived
models, the obtained threshold is likely not to be optimal.

In this work, a robust, blind, substitutive and perceptual
watermarking technique is proposed. Various characteristics
of the HVS are used to determine and adjust the visibility
level of the embedded watermark, thus resulting in an optimal
invisibility versus robustness tradeoff. The proposed technique
is designed to be robust against various kinds of attacks
(including geometrical distortions). In addition, a subjective
experiment is conducted in order to assess the invisibility
of the watermark. Finally, the proposed detection strategy is
efficient and adapts to the statistics of the watermark.

II. OVERVIEW OF THE CONTRIBUTION

Similarly to [11], [12], it is proposed to embed the water-
mark in the Fourier domain; the magnitude is used to control
the energy of the watermark while the phase is used to hold its
information. For best robustness, the watermarked coefficients
are grouped into two symmetrical square patches, which can be
expressed as a sum of sinewaves. Once displayed, this results
in a combination of sine gratings at various visual frequencies
and orientations: a perceptual model is used to adjust their
amplitude at the visibility threshold. The watermarked image
is then obtained by inverse Fourier transform. Sec. III first
describes the perceptual model, then Sec. IV focuses on the
embedding process. Sec. V details the detection process. At
first, template matching is performed between the searched
watermark and the host image. Then, Grubbs ’ test for outliers
is used to assess the presence of detection peaks.

The proposed method is designed to be robust against
multiple kinds of attacks. Sec. VI investigates the robustness of
the proposed method in comparison to [11] and [12]. Sec. VII
then reports the results of a subjective experiment assessing
the visibility of the watermark Sec. VIII then re-evaluate the
robustness when the strength has been adjusted according
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Fig. 1. The proposed HVS model estimates the probability  mark that a
watermark – embedded in an image IsRGB at visual frequencies fk and
orientations ✓k – is visible. Please refer to Section III for employed notations.

to the observers feedback. Finally, Sec. IX shows that the
proposed method is robust to low quality Print & Scan (P&S).

III. REACHING THE VISIBILITY THRESHOLD

Choosing the appropriate watermark strength is a delicate
but crucial step while designing a watermarking technique.
Over-estimations of the strength are likely to result in visible
watermarks; on the contrary, under-estimations are likely to re-
duce the robustness performances. In this paper, it is proposed
to use some properties of the HVS to automatically determine
the perceptually optimal watermarking strength, at which the
embedded watermark appears at visibility threshold.

Computational models of the HVS providing estimates
for the visibility of differences between an original and a
distorted image have been proposed, such as in [15], [16],
[17], [18] and [19]. They generally implement some of the
following elements: (1) non-linear sensitivity to the amplitude
of the luminance, (2) conversion to contrast, (3) contrast
sensitivity to visual frequencies, (4) oblique effect, (5) subband
decomposition into visual channels, (6) masking effects, (7)
psychometric probability of detection and (8) error pooling. A
survey of these models can be found in [20].

Practical applications, however, may not implement all of
these HVS properties; visual channels, for instance, may be
discarded due to their high complexity and their rather small
contribution to the visibility estimates [19]. A preliminary sub-
jective experiment was conducted on the proposed embedding
method and showed that the proposed watermark was noticed
first in uniform image areas where masking effects do not oc-
cur. Therefore, the proposed HVS model is simplified and only
features the non-linear sensitivity, the conversion to contrast,
the Contrast Sensitivity Function (CSF), the oblique effect, the
psychometric function and an error pooling model. Moreover,
excluding the masking effects from the model underestimates
the visibility threshold and thus the watermark strength: the
invisibility requirement is met anyway. The proposed model
is illustrated in Fig. 1.

Fig. 1. The proposed HVS model estimates the probability  mark that a
watermark – embedded in an image IsRGB at visual frequencies fk and
orientations ✓k – is visible. Please refer to Section III for employed notations.

watermarks; on the contrary, under-estimations are likely to re-
duce the robustness performances. In this paper, it is proposed
to use some properties of the HVS to automatically determine
the perceptually optimal watermarking strength, at which the
embedded watermark appears at the visibility threshold.

Computational models of the HVS providing estimates
for the visibility of differences between an original and a
distorted image have been proposed, such as in [19], [20],
[21], [22] and [23]. They generally implement some of the
following elements: (1) non-linear sensitivity to the amplitude
of the luminance, (2) conversion to contrast, (3) contrast
sensitivity to visual frequencies, (4) oblique effect, (5) subband
decomposition into visual channels, (6) masking effects, (7)
psychometric probability of detection and (8) error pooling. A
survey of these models can be found in [24].

Practical applications, however, may not implement all of
these HVS properties; visual channels, for instance, may be
discarded due to their high complexity and their rather small
contribution to the visibility estimates [23]. In a preliminary
subjective experiment involving 4 expert observers, it was
reported that the proposed watermark is first noticed in uni-
form image areas where masking effects do not occur (see
Sec. VII-B for experimental details). Therefore, the proposed
HVS model is simplified and discards the perceptual channel
decomposition. Moreover, excluding the masking effects from
the model underestimates the visibility threshold and thus the
watermark strength: the invisibility requirement is met anyway.
The proposed model is illustrated in Fig. 1.

A. Modeling viewing conditions
Typically, HVS models require both the viewed image and

the viewing conditions to be input. Let IsRGB(x, y) denote
an image to be watermarked, 0  x < Rx, 0  y < Ry ,
where Rx and Ry are respectively its horizontal and vertical
resolutions. Let Sx and Sy denote IsRGB’s displayed size in
meters. The display illumination is noted L; it is set to 280
cd.m�2 in the proposed model, a typical value for modern
LCD monitors (slightly above the advised illumination level
in [25]). The viewing distance d is generally expressed as a
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multiplicative factor of the active image area’s height, such
that d = d ·Sy , where d is the normalized viewing distance.

B. From pixel values to perceived contrast
Contrast sensitivity models generally take physical lumi-

nance in cd.m�2 as an input; digital images on the other hand
are gamma encoded for display purposes. The proposed model
assumes that a typical monitor (� = 2.2) is used for display;
the standard RGB (sRGB) color space [26] will thus be used.
Gamma expansion (�) is first applied to IsRGB in order to
transform the original sRGB pixel values into linear RGB
values: IRGB = � (IsRGB). In a second step, IRGB is converted
into the CIE XYZ color space, with D65 white point. Let IXYZ
denote the obtained image; its component Y is proportional
to the physical luminance and will thus be used for contrast
computation and watermark embedding.

Michelson’s formula for contrast [27], when applied to a
sine grating of peak amplitude Apeak, defines the contrast as

C(x, y) =
Apeak

Ymean(x, y)
, (1)

where Ymean is the mean illumination of the area supporting the
sine grating. In typical images, the illumination varies locally;
Ymean thus needs to be computed locally as well. As proposed
in [28], a raised cosine filter � of diameter one degree of visual
angle is applied to Y to obtain Ymean(x, y); this provides an es-
timate of the average foveal illumination over the entire image
domain. The Fourier domain, which is later used to embed the
watermark, is not spatially localized. Prior to applying such
non-localized processing steps, it is proposed to normalize
Y with respect to the local luminance Ymean. The locally
normalized luminance map Ylocal(x, y) = Y (x,y)/Ymean(x,y) may
then be input to Fourier computations. Within this normalized
luminance space, the local contrast of a sine grating writes as

Clocal = Apeak . (2)

C. Contrast sensitivity
The sensitivity to contrast is influenced by numerous factors

[29]. Intensive research has made available a large number of
computational models known as Contrast Sensitivity Functions
(CSFs), describing our sensitivity to contrast levels as a
function of the visual frequency: the CSF returns the inverse
of the threshold contrast above which a sine grating becomes
visible. In [29], an accurate CSF is built by interlinking models
for the optical Modulation Transfer Function, the photon noise,
the lateral inhibition, and the neural noise. Some aspects of
this model, though, are not theoretically supported; authors in
[30] addressed these issues and incorporated better models for
cone and midget ganglion cell densities. However, the resulting
models are computationally intensive and do not fit practical
applications such as ours.

CSFs with medium to low complexities have been made
available as well. In [31], the CSF proposed by Mannos and
Sakrison features a single parameter, the visual frequency.
However, such a model lacks important factors such as light
adaptation and stimulus size. In, the CSF proposed by Daly

features key factors, but was designed to be used within
his Visible Differences Predictor (VDP) quality model and
should be used with caution in other contexts. In [32], finally,
Barten provides a simplified formula for his initial CSF, which
also incorporates the oblique effect and the influence of the
surround luminance. In this paper, the proposed Fourier wa-
termark embedding technique (as will be further discussed in
section IV), modifies frequency coefficients whose orientations
are oblique. For this reason, it is necessary to implement the
oblique effect as our sensitivity varies with the orientation of
the visual pattern. Barten’s simplified CSF formula [32], at
binocular viewing, will thus be used in the proposed model:

CSF(f, ✓) = 5200 · e�0.0016 · f2(1+ 100
L )0.08

·

 
1 +

144

⇥2(I)
+ 0.64 · f2

·

⇣
1 + 3 sin2 (2✓)

⌘!�0.5

·

✓
63

L0.83
+

1

1 � e�0.02f2

◆�0.5

(3)

where f is the visual frequency in cycles per degree (cpd), L
is the adaptation luminance in cd.m�2 and is assumed to be
equivalent to the display illumination (see Sec. III-A), ⇥2(I)
is the square angular area of the displayed image I in square
visual degrees, and ✓ the orientation angle.

From Eqs. (2) and (3), one may now obtain the threshold
amplitude A⌧

peak(f, ✓) of a sine grating

A⌧
peak(f, ✓) = C

⌧
local(f, ✓) =

1

CSF(f, ✓)
(4)

where C
⌧
local is the local contrast threshold.

D. Psychometric function
The psychometric function  is typically used to relate the

parameter of a physical stimulus to the subjective responses.
When applied to contrast sensitivity,  may describe the
relationship between the contrast level and the probability that
such contrast can be perceived [20]. In the proposed approach,
Daly’s Weibull parametrization [20] is used:

 
�
C
⌧⇤
local

�
= 1 � e�(C⌧⇤

local)
�

, (5)

where C
⌧⇤
local = Clocal/C⌧

local is the ratio between the locally normal-
ized contrast and its threshold value given in Eq. (4). � is the
slope of the psychometric curve; its value is usually obtained
by fitting from experimental data. Typical values for � range
from 1.3 (contrast discrimination) up to 4 (contrast detection)
[33]. Moreover, the psychometric function is typically applied
locally, contrary to our model which applies it in the Fourier
domain, hence globally. For both these reasons, it is proposed
to use � = 2, a rather low value which provides a large
transition area between invisible and visible domains.

E. Watermark frequency pooling
In this paper, the watermark is embedded into multiple

Fourier coefficients, which results into the superimposing of
multiple sine gratings Gk, 0  k < N , with visual frequencies
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fk and orientations ✓k. The CSF solely provides an estimate
for the visibility of a single sine grating; a summation model
is thus required to estimate the combined visibility level of
all embedded gratings. Numerous models have been proposed
[23], [20]. Recent findings suggest that Minkowski summation
[23] may not be adequate [34]; the proposed model will thus
use probability summation as in [20].

Let C
⌧⇤
local(fk, ✓k) denote the contrast threshold ratio of

Gk. As in [20], the probability  mark that the watermark is
perceived by an observer computes as

 mark = 1 �

N�1Y

k=0

⇣
1 � 

�
C
⌧⇤
local(fk, ✓k)

�⌘
, (6)

where  mark is set according to Eq. (5): 1 � e�(1)�

= 0.632.
Let us now work our way back from the entire watermark

to individual gratings. In the proposed approach, it is assumed
that all embedded gratings share the same probability of
detection  

�
C
⌧⇤
local(fk, ✓k)

�
=  , 8k 2 [0, N [. This probability

can be derived from  mark by solving Eq. (6):

 = 1 � (1 � mark)
1/N . (7)

The corresponding normalized contrast, which is equal to
the optimal grating peak amplitude, may thus be obtained by
inversion of the psychometric function (Eq. (5))

Apeak (fk, ✓k) = C
⌧
local (fk, ✓k) ·


� ln

⇣
(1 � mark)

1/N
⌘�1/�

(8)

IV. MAGNITUDE-PHASE SUBSTITUTIVE EMBEDDING

The proposed embedding technique relies on both the am-
plitude and the phase Fourier components to modulate a binary
watermark. The amplitude allows to adjust the watermark
strength whereas the phase holds the binary information.

Let an N-bits binary sequence M1..N be the message to
embed. A binary watermark W(i, j), 0  i < M , 0  j < M ,
is generated from M1..N using a PRNG and arranged into a
M ⇥ M matrix.

Let FY (u, v) denote the Fourier trans-
form of Ylocal over frequency domain ⌦ =�
(u, v) : �Rx/2  u < Rx/2,�Ry/2  v < Ry/2

 
, where

u and v are the horizontal and vertical frequencies. Let
⌦+

W =
�
(u, v) : uw  u < uw + M, vw  v < vw + M}

and ⌦�
W =

n
(u, v) : (�u,�v) 2 ⌦+

W

o
be two subsets of ⌦

within which the watermark will be embedded; uw and vw are
called watermark modulation frequencies. The watermarked
spectrum is obtained by substitution as follows:

fFY (u, v) =8
>><

>>:

↵/2 ·A⇤
peak(u, v) · e⇡ ·W(u�uw,v�vw), (u, v) 2 ⌦+

W

↵/2 ·A⇤
peak(u, v) · e⇡ ·W(�u�uw,�v�vw), (u, v) 2 ⌦�

W

FY (u, v), elsewhere
(9)

where ↵ is a weighting factor that controls the watermark
energy relatively to the predicted visibility level. A⇤

peak(u, v)

equals to Apeak
�
f(u, v), ✓(u, v)

�
and denotes the embedded

grating’s optimal amplitude obtained in Eq. (8) for discrete
frequency (u, v); f(u, v) and ✓(u, v) respectively denote its
visual frequency and orientation. In this paper, the values for
uw and vw are both set to 80% of the highest horizontal
and vertical Fourier frequencies, thus ensuring low sensitivity
to watermarked frequencies, which induces high threshold
amplitudes, hence high watermark energy. Lower values for
uw and vw were also experimented (20% of the maximum
frequency), with similar robustness performances.

The proposed embedding scheme given in Eq. (9) is a
substitutive technique. Here, the choice for amplitude substi-
tution is straightforward as it allows precise control over the
energy of the watermark. Moreover, as can be seen in Eq. (9),
phase substitution is performed in order to encode the binary
watermark information: zeros are coded as null phases, ones
as ⇡ phases. Eventually, the watermarked image is obtained by
inverse Fourier transform, local luminance de-normalization,
and transform into the original color space.

V. TWO-STEPS BLIND WATERMARK DETECTION

Let [IsRGB be a supposedly watermarked image; it is assumed
to have the same resolution and dimensions as the original
image IsRGB, otherwise it is re-scaled. Let Ylocal(bI) denote its
locally normalized luminance map (see Section III-B).

The proposed detection algorithm is blind, thus neither
requires the original image IsRGB nor the original Fourier
coefficients nor the CSF weighting coefficients. It is performed
in two steps. At first, Template Matching (TM) is used to com-
pute a 2D correlation matrix between the Fourier transform of
Ylocal(bI) – denoted cFY – and the watermark to be detected
W(i, j). Then, outlier detection is performed to assess the
presence of matching locations within the correlation matrix,
thus providing a binary decision (zero-bit watermarking).

A. A 2D-correlation algorithm based on template matching

Often, detection schemes are solely based on a correlation
coefficient that is compared to a predefined threshold value
(e.g. [4], [15]). Detectors based on cross-correlation, cross-
covariance and their optimized variants [35] generally perform
better, at the cost of an increased computational load. Most
often, however, one-dimensional correlation is performed [16],
while the searched pattern is likely to be two-dimensional.
Moreover, geometric distortions affect the location and shape
of the watermark in the Fourier domain.

Not only does 2D cross-correlation account for the two-
dimensional structure of the embedded watermark, but the
displacement of its correlation peaks allows to estimate the
geometrical distortions undergone by the input image [IsRGB.
Therefore, it is proposed to perform two-dimensional TM sim-
ilarly to [14]. Furthermore, no additional re-synchronisation
watermark is required (contrary to [36], [37], [38]); the TM
is able to retrieve the watermark as long as it is located, even
partially, within the searched area.

Typically, TM involves: (1) a supporting signal S , (2) a
searched template T , (3) a search area ⌦S and (4) a matching
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Fig. 2. Correlation matrices ⇠(u, v): how the dynamic range of the detection peaks and the surrounding noise varies with the watermark size M .

criterion ⇢. In our case, S is derived from cFY :

S(u, v) =

8
>><

>>:

���cFY (u, v)
��� , �⇡/2 < arg

⇣
cFY (u, v)

⌘
 ⇡/2

�

��� cFY (u, v)
��� , ⇡/2 < arg

⇣
cFY (u, v)

⌘
 �⇡/2

(10)
which encompasses both the Fourier energy and the phase
information into a single signed signal. This stands in contrast
to Kang et al. [14], who perform phase-only correlation to
cope with the large dynamic range of the energy of the
watermarked coefficients. In our scenario, this range depends
on the CSF; therefore it is rather low, which allows us to
take the energy level into account as well. The template T is
derived from the binary watermark W as follows:

8(i, j) 2 [0,M [2 ,

T (i, j) = A⇤
peak(uw + i, vw + j) ·

�
2 · W(i, j) � 1

�

(11)
which maps W’s binary values from {0, 1} to {�1, 1} and
accounts for the optimal amplitude A⇤

peak of the embed-
ded gratings (see Eq. (9)). The search area ⌦S is cen-
tered around the original watermark modulation frequen-
cies, such that ⌦S =

�
(u, v) : uw � M < u < uw + M,

vw � M < v < vw + M}. Finally, Pearson’s correlation co-
efficient serves as matching criterion ⇢, so that the
final 2D correlation matrix is given by ⇠(u, v) =
⇢(T ,S(⌦M⇥M

u,v )), where (u, v) 2 ⌦S and ⌦M⇥M
u,v =�

(u0, v0) : u  u0 < u + M, v  v0 < v + M
 

.

B. Peak detection

Typically, watermark detection is granted when the correla-
tion score exceeds some given threshold value. It is generally
obtained by measuring [15] (experimentally) or estimating
[18] (theoretically) the distribution of the values of the correla-
tion matrix under true or false detection scenarios. On the one
hand, theoretical approaches are based on statistical analysis,
and thus make assumptions that may not hold in practice. On

the other hand, experimental thresholds are only valid within
the scope of the test signals. In any case, the obtained threshold
is constant, and might not be optimal.

In contrast, the dynamic range of a correlation matrix varies
with numerous parameters. To illustrate this, the proposed
embedding method was used to watermark the Lena image.
The watermarked image was then rotated (1.5�) and blurred
(Gaussian noise, � = 2.0) to simulate an attack. Fig. 2 plots
the obtained correlation matrices, for M = 32 (Fig. 2a) and
M = 64 (Fig. 2b). Although the detection peaks are obvious
in both cases, their amplitude, as well as the amplitude of
the surrounding noise, differ significantly. In other words, the
detection decision should be driven by the relative difference in
amplitude between the correlation peak(s) and the surrounding
noise. In Fig. 2, for the same image, the same embedding
method, and against the same attack, a fixed detection thresh-
old (e.g. 0.4) would properly detect the correlation peak from
Fig. 2a and miss the one from Fig. 2b.

Instead, detection peaks may be seen as outliers. Numerous
methods for outlier detection have been proposed in the
context of statistical analysis [39]. Grubbs’ test [40] is one
such method, both robust and low computational, and solely
requires that input correlation matrices are (approximately)
normally distributed. This assumption is quite common [18];
Kolmogorov-Smirnov tests further confirmed Gaussianity of
the correlation matrices in practical experiments. The pro-
posed detection method features an iterative implementation
of Grubbs’ test that removes one outlier value at a time, up to
a predefined maximum number of outliers. Alternatively, the
performances of the Extreme Studentized Deviate (ESD) test
were also investigated and proved to be identical in practical
experiments. Such an approach prevents us from fixing the
threshold, and adapts the detection to the observed correlation
matrix. Moreover, it can be applied to any correlation-based
watermark embedding method. Last but not least, the test’s
significance level ↵G can be used to control the tradeoff
between detection capacity and false alarm rate. High (resp.
low) values bring higher (resp. lower) True Positive (TP) and
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False Positive (FP) rates. In terms of complexity, the proposed
method proves to be very fast: with 1024 ⇥ 1024 images and
64⇥64 watermarks, both detection and embedding steps took
approximately 0.2s to perform on a mid-2012 Mac Book Pro
(2.3 GHz Intel Core i7 processor, 8Gb of RAM), of which
0.26ms was needed to apply Grubbs’ test.

VI. EXPERIMENTAL RESULTS

Most experimental results were obtained from dataset Da

containing nine images with resolution 512 ⇥ 768, including
six natural color images, two text images and one cartoon
color image. They are listed in Table I. When a larger number
of images were required (e.g. threshold selection), a second
dataset Db featuring 1000 natural color images was used.
The results are compared to those of [15] and [16]. Datasets,
watermarked images and additional data are available online1.
Fig. 3 shows examples of watermarked images at default
embedding strength ↵0 (↵ = 1, see Eq. (9)).

TABLE I
DATASET Da USED IN THE EXPERIMENTS

# Name Type Description

1 ED Cartoon Elephant dream (652nd frame, cropped)
2–7 k03 – k23 Natural Images 3, 7, 15, 20, 21 and 23 from [41]

8 dsc Text Scanned payslip, cropped
9 wilk Text Wilkins text [42]

(a) Cartoon image ED (b) Text image wilk

Fig. 3. Examples of atypical images (cartoon and text): watermarked images.

A. Grubbs significance level
In order to determine the optimal significance level for

Grubbs’ test, Da’s images were watermarked with the pro-
posed algorithm. 90 attacks, from the Stirmark benchmark
[43], were then applied to both original (hypothesis H0)
and watermarked (hypothesis H1) images. Detection was
finally run on each resulting image with varying values for
↵G. This process was repeated for several watermark sizes
M 2 {16, 32, 64, 128}. The results obtained for both H0 and
H1 scenarios are shown in Fig. 4.

As can be seen from Fig. 4a, the TP rate slightly varies with
↵G, and mostly with the size of the embedded watermark. As
for the FP rate, it also increases with the size of the watermark,
but exponentially increases with ↵G. Therefore, the value of
↵G may be adjusted according to the desired false alarm rate.
In the next experiments, we set M to 64 – in order to provide
high detection performances – and ↵G to 1e�4 – in order to
ensure a low FP rate (null in experimented images) –.

1http://www.irccyn.ec-nantes.fr/⇠autrusse/DFTWmking/
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Fig. 4. True Positive and False Positive detection rates against Stirmark
attacks on Da: influence of the watermark size (M ) and ↵G

B. False alarms and true detections
To ensure optimal detection performances, the gap between

the detection scores in watermarked images (hypothesis H1)
and those in un-marked images (hypothesis H0) need to be as
large as possible. Detection scores were collected on dataset
Db (1000 images). Fig. 5 plots the histograms (solid lines) of
the detection scores in both scenarios H0 and H1, along with
the fitted Gaussian models (colored areas). As can be seen,
H0 and H1 distributions are clearly disjoint in the proposed
technique, similarly to [15]. Conversely, Fig. 5 shows that the
distributions of H0 and H1 are much closer in [16], thus
resulting in respectively higher and lower FP and TP rates.

C. Robustness to attacks
The robustness of the proposed watermarking algorithm to

various attacks was measured with the Stirmark benchmark
[43]. All 90 Stirmark attacks were applied on dataset Da, thus
resulting in 810 attacked images. The robustness is reported in
terms of maximum of correlation against experimented attacks;
yet, the proposed detection scheme depends on the output
of Grubbs’ test (absence/presence of outliers). Therefore, the
robustness of the proposed algorithm is reported in terms of
percentage of images with a positive detection (detection rate).
The obtained results are compared with [15] and [16], where
detection rates correspond to the percentage of images for
which correlation is higher than the predefined thresholds.

The obtained results are plotted in Fig. 6; details for each
attack are available online. For each attack, the dark bar(s)
correspond to the best performing algorithm(s) and the light
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bar(s) to the least performing algorithm(s). Overall, it appears
that the proposed technique performs best with an average
detection rate of 62.5%, while [15] and [16] respectively reach
52.1% and 53.1%. It should be noted that [16] performs well
against most kinds of attacks, although seldom performing
best out of the three algorithms. The proposed technique is
especially robust to geometric distortions such as rotations
(despite the fact that [15] and [16] embed a circular watermark
contrary to the proposed approach) and shearing. Still, only
[16] withstands severe rotations and cropping. In addition,
the proposed technique is nearly as robust as [15] to scaling
and filtering operations, and nearly as robust as [16] to
cropping. Moreover, it is significantly more robust to random
bending, which randomly adds local geometrical distortions,
as can be induced by severe P&S effects. On the downside,
it appears that the proposed technique is not robust to severe
JPEG compression, although this can be explained by the fact
that the chosen watermark modulation frequencies are high
and thus very likely to be strongly affected by compression.
Better robustness against coding artifacts could be achieved
by simply shifting the embedded watermark towards lower
frequencies. Further information can be found in Table II
which lists average detection rates amongst groups of attacks.

VII. SUBJECTIVE EXPERIMENT

Previously, we assessed the robustness of the proposed
watermarking scheme at default strength ↵0 = 1 and compared
it to [15], [16] at suggested strengths. Yet, one may wonder
whether these strengths are equivalent in terms of visibility,
hence whether previous results are truly comparable. For this
reason, a subjective experiment was conducted to determine
the optimal strengths at which the watermarks appear at
visibility threshold. Section VIII will re-assess the robustness
of the compared algorithms at the obtained strengths.
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Fig. 6. Robustness to Stirmark attacks at default embedding strength (↵0):
detection rates on dataset Da

TABLE II
STIRMARK BENCHMARK AT DEFAULT EMBEDDING STRENGTH: AVERAGE

DETECTION RATESa (%) AMONGST GROUPS OF ATTACKS ON DATASET Da .
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Prop. 62.5 100 88.9 29.6 27.8 100 100 51.4 50.0 88.9 94.5 55.6
[16] 53.1 77.8 71.1 33.3 51.9 59.3 76.4 45.8 48.6 64.8 40.7 44.4
[15] 52.1 100 100 0.0 100 92.6 100 11.8 11.1 100 42.6 11.1

a In each column, the bold value designates the best performing algorithm.

A. Apparatus and methodology

Observers were seated in a standardized room [44] and
watched experimental stimuli on a 40” TV Logic LVM401
display, with 1920 ⇥ 1080 resolution. Screen brightness was
set to 200 cd.m�2. Calibration was performed with an Eye
One Pro luminance meter: gamma correction was set to 2.2
and white point to 6600 K. Room illumination was set to 30
cd.m�2 behind the screen, hence 15% of the perceived screen
brightness. Finally, the viewing distance was set to six times
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the height of the presented images (as in [6]).
The Two Alternative Forced Choice (2AFC) protocol was

used as it is best suited to estimate visibility thresholds. 37
naive observers were recruited to participate to the experiment;
screening tests ensured that they had a perfect visual acuity
(Snellen chart) and no color deficiencies (Ishihara plates). The
2AFC methodology [45] (chap. 8, p. 258) was used to assess
the visibility of the embedded watermarks. Nine anchor images
were first presented for the observers to familiarize themselves
with the sources and the type of degradations. All 243 images
were then shown randomly to each observer. Observers were
showed each pair of images (the watermarked image and its
original version) during 10 seconds, at which point images
were hidden. Observers were forced to vote for either one or
the other image they thought was containing the watermark,
before they could resume the experiment.

B. Stimuli set
Source images were taken from dataset Da. The nine

images were then watermarked with three different algorithms
(proposed, [15] and [16]). This watermarking was repeated for
various embedding strengths ↵i = wi ·↵0, 1  i  9, where
wi are weighting coefficients, and ↵0 is the default strength.
↵0 = ↵ = 1 according to Eq. (9) in the proposed algorithm;
↵0 = 0.3 in [15]; finally, ↵0 is image-adaptive in [16].

In 2AFC experiments, it is especially important to make sure
that presented stimuli span the entire visibility range, therefore
from completely invisible to severely distorted: the obtained
results can thus be best fitted to the expected psychometric
curve. Table III lists the values for wi, whose suitability was
assessed by 4 expert observers who performed the proposed
experiment prior to naive observers. In total, 243 images were
included in the subjective experiment.

TABLE III
DATASET Da : WATERMARK STRENGTH WEIGHTING COEFFICIENTS wi

Algorithm Img. w1 w2 w3 w4 w5 w6 w7 w8 w9

Proposed
1–7 0.13 0.25 0.50 0.75 1.00 1.50 2.00 4.00 6.00
8–9 0.25 0.50 0.75 1.00 1.25 1.38 1.50 2.00 4.00

[15]
1–7 0.06 0.13 0.19 0.25 0.38 0.50 1.00 2.00 3.00
8–9 0.03 0.06 0.09 0.13 0.15 0.17 0.25 0.50 1.00

[16]
1–7 0.25 0.37 0.50 0.75 1.00 2.00 5.00 10.00 20.00
8–9 0.50 0.75 1.00 2.00 3.00 5.00 7.00 10.00 20.00

C. Analysis
Let V(i, j) denote the vote of the jth observer at the ith

image: it is equal to 1 if the watermarked image was correctly
identified, and to 0 otherwise. For each of the 243 watermarked
images, the percentage of observers who correctly identified
the watermarked image R(i) = 1/Nobs ·

PNobs
j=1 V(i, j) is called

the 2AFC detection rate, where Nobs = 37 is the number of
observers. A clustering-based analysis revealed 6 observers
whose votes were inconsistent, these were removed from
subsequent analysis, thus reducing Nobs to 31.

Fig. 7 plots the 2AFC detection rates R(i) obtained for
image ED from dataset Da (circles) against the strength
weighting coefficients wi. Typically, the visibility threshold
is assumed to be obtained for a 2AFC score of 75% [45].
Experimental data are fitted to a sigmoidal Weibull curve to
obtain the corresponding psychometric curve, from which the
threshold value and therefore optimal watermarking strength
↵⇤ can be obtained. Fig. 7 also shows the corresponding
Weibull fit (solid line), along with the 75% threshold which
is reached for strength ↵⇤ = w⇤

·↵0, with w⇤ = 0.62.

0 1 2 3 4 5 6

0.5
0.6
0.7
0.8
0.9
1.0

w = α α0
2A

FC
 d

et
ec

ti
on

 r
at

e

●
●

●

●

● ●
●

● ●

w
*

=
0.

62

75%

● Experimental values
Weibull fit

Fig. 7. Proposed method: 2AFC analysis on image ED - dataset Da

The same fitting process is repeated for each image and each
algorithm, therefore resulting in 27 perceptually optimized
strengths ↵⇤ = w⇤

·↵0. Table IV lists the obtained weights
w⇤. Fig. 8 plots w⇤’s distributions for each of the three
algorithms; for plotting purposes, the histogram was computed
on the binary logarithm of w⇤: log2(w

⇤) = 0 therefore
corresponds to ↵ = ↵0, log2(w

⇤) = 1 to ↵ = 2 ·↵0 and
log2(w

⇤) = �1 to ↵ = 0.5 ·↵0. These strengths ↵⇤, in the
scope of experimented images, optimize the robustness versus
visibility tradeoff. The further away the default strength ↵0 is
from its optimum ↵⇤, the more (in)visible is the watermark.
When the default strength ↵0 is greater than its optimum ↵⇤

(i.e. log2(w
⇤) < 0), the watermark is likely to become visible.

Conversely, when ↵0 is less than ↵⇤ (i.e. log2(w
⇤) > 0), the

watermark is invisible but the strength is not maximized, hence
likely resulting in a loss of robustness.

TABLE IV
DATASET Da : PERCEPTUALLY OPTIMAL STRENGTH WEIGHTING

COEFFICIENTS w⇤

Algorithm ED k03 k07 k15 k20 k21 k23 dsc wilk

Proposed 0.62 2.10 2.98 1.46 0.46 1.96 3.00 0.84 0.55
[15] 0.32 0.48 0.30 0.20 0.18 0.14 0.22 0.14 0.16
[16] 0.88 1.08 0.72 1.01 1.04 0.49 0.96 3.64 1.30

Fig. 8 shows that algorithm [15] overestimates the water-
marking strength by factors ranging from 2 to 8: the embedded
watermark is always visible at default strength. The other two
algorithms perform much better in this regard: the distribution
of their w⇤ are nearly centered around the default position;
misestimation factors remain within the [0.46; 3.64] range
(Table V). In addition, both of these algorithms are more likely
to under-estimate the strength than to over-estimate it, which
is preferable as it keeps the watermark invisible.
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TABLE V
PERCEPTUALLY OPTIMAL STRENGTH WEIGHTING FACTORS: A SUMMARY.

Algorithm
Optimal weight w⇤ Estimation Adequacy (%)

min. max. average over-est. under-est.

Proposed 0.46 3.00 1.55 44.4 55.6
[15] 0.14 0.48 0.24 100.0 0.0
[16] 0.49 3.64 1.24 44.4 55.6

Above all, these results tend to show that the proposed HVS
model provides good estimates for the visibility threshold.
While [16] does not feature any kind of psychophysical model,
the embedded watermark also nears the visibility threshold.

VIII. PERFORMANCES AT THE VISIBILITY THRESHOLD

Here, the algorithms are re-evaluated with the obtained
perceptually optimized strengths ↵⇤. Images from dataset Da

are thus watermarked using ↵⇤ instead of ↵0.

A. Robustness to attacks
The robustness benchmark performed in section VI-C was

thus rerun at ↵⇤. The obtained results are plotted in Fig. 9;
again, the darkest bar(s) correspond to the best performing
algorithm(s) and the light bar(s) to the least performing algo-
rithm(s). Table VI summarizes average detection rates amongst
groups of attacks.

In average, the three algorithms now feature similar ro-
bustness percentages: [15] and [16] tie at 65.3%, and the
proposed method reaches 63.2%. In the proposed method, the
robustness to individual attacks is very similar to the scores
obtained at default strength (see Fig. 6). Still, the robustness to
filtering, shearing and random bending moderately improves
with optimal strengths. In [16], the robustness is significantly
improved for all kinds of attacks; it even slightly outperforms
our method against JPEG, rotation, and the rotation & scaling.
As a consequence, the introduction of a perceptual model
into [16] would be very likely to significantly enhance its
robustness instead of targeting a given PSNR.
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Fig. 9. Robustness to Stirmark attacks at visibility threshold (↵⇤): detection
rates on dataset Da

TABLE VI
STIRMARK BENCHMARK AT VISIBILITY THRESHOLD: AVERAGE

DETECTION RATESa (%) AMONGST GROUPS OF ATTACKS COMPARED TO
BASELINE RATESb
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Prop. 63.2 100 95.0 30.6 30.2 100 100 50.8 50.0 85.4 97.9 62.5
Diff. +0.7 – +6.1 +0.9 +2.4 – – -0.6 – -3.5 +3.5 +6.9

[16] 65.3 95.6 97.8 49.4 40.7 77.8 88.9 61.8 59.0 90.7 51.9 77.8
Diff. +12.2 +17.8 +26.7 +16.1 -11.1 +18.5 +12.5 +16.0 +10.4 +25.9 +11.1 +33.3

[15] 65.3 77.8 100 18.5 100 100 100 33.3 35.4 100 79.6 66.7
Diff. +13.0 -22.2 – +18.5 – +7.4 – +21.5 +24.3 – +37.0 +55.6

a In each column, the bold value designates the best performing algorithm.
b Rows “Diff.” indicate the difference in detection rate w.r.t. baseline rates
obtained at default embedding strengths – see Table II.

Surprisingly in [15], there is no overall loss in robust-
ness despite the strong reduction in the embedding strength
(↵⇤ = 0.24 ·↵0 in average), but on the contrary a drastic
improvement. This can be explained by the fact that the



IEEE Transactions on Information Forensics and Security, VOL. , NO. , 10

normalized correlation value in [15] is inversely proportional
to the embedding strength. The detection threshold from [15]
being fixed, the FP rate is likely to rise.

Besides high detection capabilities, providing stable per-
formances over a rather large range of embedding strengths
is also essential. In the proposed technique, variations in the
embedding strength do not significantly affect the robustness
thanks to the efficiency of the perceptual model that accu-
rately set the watermark strength with respect to its visibility
threshold. Conversely in [15] and [16], small variations in the
embedding strength strongly affect their robustness, in other
words, unstable performances.

B. Objective quality
Among the three tested algorithms, three different strategies

are observed. In the proposed method, a perceptual model
automatically adjusts the watermark strength at the visibility
threshold. In [15], the embedding strength is fixed and is thus
independent of the image content. In [16], the embedding
strength is progressively increased, so as to reach a target
PSNR of 40 dB. Although it is widely accepted that the PSNR
does not reflect image quality, it is still a recurrent quality
metric when assessing the visibility of a watermark.

Fig. 10 plots the 2AFC detection rate as a function of the
PSNR for image k21. The numerical values next to each
point within the figure gives the detection performances for
various wi against 90 Stimark attacks (in percents). At a
constant PSNR of ⇠ 37.9 dB (see the vertical dimension
line A in Fig. 10), the proposed watermark is invisible (2AFC
percentage of 27.3%), while the watermark from [15] is highly
visible (2AFC percentage of 93.9%). Focusing now on data
points close to the visibility threshold (see the horizontal
dimension line B in Fig. 10), it appears that the obtained
PSNRs significantly differ between [16] (43.2 db) and the
proposed method (29.3 dB), while the watermark in [16]
is slightly above the visibility threshold (81.8%) and the
proposed watermark is slightly under the threshold (69.7%).
In addition, the robustness of the proposed method is higher
(62%) than the one of [16] (56%). Therefore, assessing the
quality of experimented algorithms, from their PSNRs only,
would conflict with the subjective results (ground truth), which
in turn would lead to erroneous conclusions.

Concerning the robustness performances, one can see that
experimented algorithms behave differently with varying wi.
As it was already seen in section VIII-A, slight variations in
embedding strength have a significant impact on the robustness
in [16] and [15], but have little impact on the proposed
approach. In the proposed method, performances remain stable
across experimented wi; in [16], they are dramatically reduced
(from 78% down to 5%) at low wi; surprisingly in [15], they
increase (from 52% up to 88%) with decreasing wi.

This effect was already observed in Sec. VIII-A (see Fig. 9).
We further investigated this unexpected behavior and studied
the Receiver Operating Characteristics (ROCs) of [15]. The
ROC curves obtained for various strengths w ·↵0, with w
ranging from 0.24 (the average w⇤ across dataset Da in [15])
to 0.14 (the minimum w⇤). While the ROC curve remains near-
optimal for w = 0.24, it quickly declines at lower strengths
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Fig. 10. 2AFC visibility percentage versus PSNR for Da’s image k21

(Fig. 11). At w = 0.14, the TP rate starts decreasing at high FP
rates (10�1) and drops to 0.1 for an FP rate of 10�16. Neither
in the proposed technique nor in [16] was this observed.
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C. Content-dependency: some aspects
Fig. 12 plots, for each algorithm, the average robustness

to Stirmark attacks in each image belonging to dataset Da, at
default strength (dashed line) and optimal strength (solid line).
In addition, the bars in Fig. 12 plot the absolute difference
in robustness between default and optimal strengths, i.e. the
gain or loss in robustness when switching from ↵0 to ↵⇤.
It can be seen that the performances are consistent across
all images in the proposed approach. Conversely in [15] and
[16], performances are much more inconsistent. This can be
explained by the fact that, thanks to the accurate estimation
of the visibility threshold provided by the proposed perceptual
model, the watermark strength is properly adapted to the visual
contents whilst this is not the case in [15] and [16].

IX. ROBUSTNESS TO PRINT & SCAN

In order to validate the proposed scheme in a more realistic
scenario, the robustness to Print & Scan (P&S) of the proposed
method was evaluated on seven 512 ⇥ 512 standard images
(Baboon , Barbara, Boats, Fruits, Lena, Monarch
and Peppers denoted as D

i
s, 1  i  7, in Table VII) and

nine images of the Da database (denoted D
j
a, 1  j  9).
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Fig. 12. Average robustness per image for dataset Da at default strength
↵0 (dashed lines) and optimal strength ↵⇤ (solid line). The bars plot the
corresponding difference in robustness.

As demonstrated in Sec. VII-C, default (↵0) and optimal (↵⇤)
strengths are close; here, images were watermarked at ↵0. To
ensure best reproducibility, each watermarked image was first
printed five times at 600 ppi (with a 80% downscaling) on a
Dell 2335dn laser printer. Printed images were then scanned at
75, 150, 200 and 300 ppi with a Lexmark CX410de scanner,
thus leading to 320 scanned images (images were placed
approximately straight on the scanner glass).

For each watermarked image and scanning resolution, Table
VII lists the number of images (out of five) for which
the watermark was detected. As can be seen, the proposed
approach is not robust to very low scanning quality (75 ppi),
but is robust to slightly higher resolutions 150 to 300 ppi.
The detection fails only in text images wilk (see Fig. 3b)
and dsc. In comparison, [16] is robust to a combination of
print (600 ppi) and scan (150 ppi). The technique in [37] is
not robust to scanning resolutions below 600 ppi, while the
technique in [14] can withstand resolutions as low as 100 ppi.

An informal 2AFC subjective test was run on the 16 prints
with 8 observers. The results show that the watermark remains
under the visibility threshold (53.1% of detection).

X. CONCLUSION

This paper proposes a new watermarking method. The
watermark, a square patch of coefficients, is embedded within
the Fourier domain by substitution of both the magnitude
(energy) and the phase (information). The watermark strength
is perceptually optimized. The detection features both template
matching and outlier detection, the latter being applied to the
obtained correlation matrix. The decision is positive if at least
one outlier is detected, and negative otherwise.

The proposed method was extensively compared to two
competing algorithms from the literature. A subjective exper-
iment was conducted in order to determine the perceptually
optimized watermarking strengths (i.e. at the visibility thresh-
old). The performances of both the proposed and the compared

algorithms were evaluated twice: at default then perceptually
optimal strengths. Experimental results showed that:

1) the proposed perceptual model accurately sets the wa-
termark to its visibility threshold and is stable across all
kinds of experimented contents;

2) the template matching accurately locates the watermark
for slight geometrical distortions;

3) Grubbs’ test for outlier performs very well both in terms
of True Positives and False Positives;

4) the proposed method is robust against Print & Scan and
shows state-of-the-art performances.
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