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a b s t r a c t

The first physiological process influencing visual perception is the optics of the eye. The retinal image is
affected by diffraction at the pupil and several kinds of optical imperfections. A model of the eye (Thibos
& Bradley, 1999), which takes account of pupil aperture, chromatic aberration and wavefront aberrations,
was used to determine wavelength-dependent point-spread functions, which can be convolved with any
stimulus specified by its spectral distribution of light at each point. The resulting retinal spectral distri-
bution of light was used to determine the spatial distribution of stimulation for each cone type (S, M and
L). In addition, individual differences in retinal-image quality were assessed using a statistical model
(Thibos, Bradley, & Hong, 2002) for population values of Zernike coefficients, which characterize imper-
fections of the eye’s optics. The median and relatively extreme (5th and 95th percentile) modulation
transfer functions (MTFs) for the S, M and L cones were determined for equal-energy-spectrum (EES)
‘white’ light. The typical MTF for S cones was more similar to the MTF for L and M cones after taking
wavefront aberrations into account but even with aberrations the S-cone MTF typically was below the
M- or L-cone MTF by a factor of at least 10 (one log unit). More generally, the model presented here pro-
vides a technique for estimating retinal image quality for the S, M and L cones for any stimulus presented
to the eye. The model is applied to some informative examples.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A single point of monochromatic light that enters the eye has a
two-dimensional retinal image due to diffraction and imperfec-
tions of the eye’s optics. The retinal image can be characterized
by a point spread function (PSF), which varies with the wavelength
of light. With broadband light, the retinal image is determined by
decomposing the point of light into its spectral components; the
PSF is applied separately at each wavelength (Barnden, 1974;
Ravikumar, Thibos, & Bradley, 2008). The distribution of light on
the retina is the superposition of the light distributions for each
of the wavelengths. When an observer views a complete scene
rather than a single point, each point in the scene is independently
affected by the eye’s optics; conceptually, the resulting retinal im-
age at each wavelength is the superposition of the distribution of
light from each point in the scene. Retinal image quality depends
on both the PSF for each wavelength and the spatial and spectral
distribution of the light in view.

Optical models of the eye have been sought for centuries for a
variety of applications (Emsley, 1952; Smith, 1995). A relatively re-
cent model (Thibos & Bradley, 1999) was used here to determine
the spatial and spectral distribution of light on the retina; this dis-
tribution then was used to find the spatial distribution of light for
each receptoral cone class, L, M and S. This model has two advan-
tages in comparison to Marimont and Wandell’s (1994) well
known model of retinal image quality. First, higher-order wave-
front aberrations were considered explicitly here rather than as
an implicit property of a wavelength-independent point spread
function (Marimont & Wandell, 1994, p. 3116). Second, the Thibos
and Bradley model-eye depends on specific parameters (Zernike
coefficients) that characterize an individual eye, and these param-
eters have a known multivariate population distribution. The pop-
ulation distribution allowed estimates of individual differences in
retinal image quality among people with normal corrected vision
(Thibos, Bradley, & Hong, 2002). While a general comparison of
the retinal image quality given by the Marimont and Wandell mod-
el versus the one used here is not possible because the models de-
pend on different assumptions, results from the two models are
compared in Section 5 using a typical eye from the population dis-
tribution given by Thibos, Bradley, and Hong (2002). The two mod-
els agree well in this special case (as discussed later).
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The first part of this paper focuses on retinal image formation.
The optical model is described and the calculated photoreceptor
absorptions are explained. In the second part, the model is applied
to broadband ‘white’ spectral stimuli to assess typical and extreme
retinal contrast sensitivity in a normal population of human
observers. The third part considers some specific cases to show
how retinal image quality depends on particular features of a vi-
sual stimulus, and to demonstrate how the model may be applied
to particular types of images.

2. Part 1: Retinal image model

The retinal image is determined by characterizing the eye’s op-
tics. Any optical system can be fully described mathematically over
an isoplanatic area by its optical transfer function (Williams &
Becklund, 1989) so calculating the retinal image involves deter-
mining the eye’s optical transfer function (OTF) or the closely re-
lated point spread function (PSF). The PSF gives the retinal image
of a monochromatic point source, taking account of the optics of
the eye. The OTF is the Fourier transform of the intensity PSF.

A precise model of the eye includes various optical factors that
affect the PSF at each wavelength. This section covers the main
properties of the model eye used to determine the PSFs. Recall that
the external stimulus pattern entering the eye is decomposed into
multiple monochromatic stimulus patterns, and then the stimulus
pattern at each wavelength is convolved with its wavelength-
dependent PSF. This gives the retinal image I(x,y,k) at each wave-
length k. Superposition of these monochromatic retinal patterns
yields the retinal spectral distribution of light for each spatial loca-
tion (x,y). These spectral distributions allow calculation of the spa-
tial distribution IC(x,y) of cone excitation for each cone type C
(C = L, M or S) by applying the appropriate cone spectral sensitivity
function SC(k) as a weighting factor:

ICðx; yÞ ¼
Z

SCðkÞIðx; y; kÞdk: ð1Þ

2.1. Optics of the human eye

The human eye has three main optical components that affect
retinal image quality: the pupil, the cornea and the lens. The pupil
diffracts light entering the eye, resulting in a PSF with a central
point surrounded by concentric rings (Roorda, 2002; Williams &
Hofer, 2004). The cornea accounts for most of the eye’s refraction
(about 43 diopters) while the lens, which refracts light after pass-
ing through the pupil, adds more than 20 diopters in a young adult
(Roorda, 2002). The cornea and lens are the primary contributors to
wave aberrations, which degrade retinal image quality. In the
study here, all of these factors were combined into a reduced-eye
optical model containing a pupil and a single refracting surface
that is distorted from an optically perfect ellipse to exactly mimic
the monochromatic aberrations of the whole eye (Ravikumar,
Thibos, & Bradley, 2008). To account for individual variation,
numerous such models were constructed using a statistical distri-
bution of aberrations in a normal population of healthy adult eyes,
as elaborated below. The monochromatic imaging capability of
each model eye is summarized by its PSF.

Longitudinal chromatic aberration (LCA) is a consequence of
refraction by a dispersive medium: light of different wavelengths
is brought into focus at different distances. The focal distance in-
creases with wavelength. LCA was included in the model by allow-
ing the Zernike coefficient C0

2 for defocus to vary with wavelength
as prescribed by the Indiana Eye model of chromatic aberration
(Thibos, Ye, Zhang, & Bradley, 1992). Transverse chromatic aberra-
tion was ignored because of its weak marginal influence on image

quality when LCA and wave aberrations are considered
(Ravikumar, Thibos, & Bradley, 2008). Similarly, the slight effect
of higher-order chromatic aberrations on image quality was not in-
cluded (Nam, Rubinstein, & Thibos, 2010).

Retinal image quality depends on pupil size and the wavelength
of light. The greatest loss of image quality from diffraction occurs
with a small pupil and long wavelengths. On the other hand, the
greatest loss from refractive elements occurs with a large pupil
and short wavelengths. The sharpest retinal image, therefore, typ-
ically is at an intermediate pupil size near 3 mm, which balances
the tradeoff between diffraction (worse at smaller pupil diameters)
and the deleterious effects of wave aberrations (worse at larger
diameters).

The best known wave aberrations caused by the eye’s optics are
defocus and astigmatism, which are ameliorated by standard cor-
rective lenses. Higher-order wave aberrations (trefoil, coma, spher-
ical, as well as other still higher-order aberrations) also reduce
image quality (Packer & Williams, 2003). The imperfections cap-
tured by the higher-order wave aberrations include the irregulari-
ties in optical elements within the eye. The eye’s lower- and
higher-order wave aberrations can be modeled accurately using
Zernike polynomials; the first 15 Zernike mode numbers were used
here for the polynomials (Thibos & Bradley, 1999; Thibos, Hong,
Bradley, & Cheng, 2002). Statistical sampling of Zernike aberration
coefficients produced a random sample of 100 model eyes for anal-
ysis, each of which yielded monochromatic PSFs that were repre-
sentative of human eyes (Thibos, 2009).

As mentioned above, each wavelength of light is affected differ-
ently by the optics of the eye so each wavelength has its own dis-
tinct PSF; we refer to the set of PSFs for all wavelengths in the
visible spectrum as a hyperspectral PSF. Spectral sampling here
was every 10 nm, a choice supported by the analysis of Ravikumar,
Thibos, and Bradley (2008). A hyperspectral PSF captures two
important aspects of retinal image quality. First, an object with a
single broadband chromaticity, such as equal-energy-spectrum
‘white’, does not necessarily produce on the retina an image at only
that chromaticity because some wavelengths are more strongly
dispersed than others. Second, spectral mixtures that are visually
indistinguishable in color as large homogenous patches (color
metamers) may not match at other spatial frequencies because
the wavelengths composing each metamer are unequally affected
by optics (Marimont & Wandell, 1994; Poirson & Wandell, 1993).

An implication of the second point is that the influence of optics
on the retinal image can be determined only from the full spectral
distribution of light entering the eye. In general, a trichromatic
description of the light – for example CIE X,Y,Z tristimulus values
or the excitations of the three types of cones – is not sufficient.
While some special cases can reduce the computational burden of
multiple convolutions (for example, spectral homogeneity where
every point in the image emits the same relative radiance spectrum,
or when the full spectral distribution is uniquely determined by the
trichromatic specification; Barnden, 1974; Ravikumar, Thibos, &
Bradley, 2008), these conditions rarely occur in the natural world.

2.2. Cone quantal absorptions

Transduction of light at the photoreceptors establishes the neu-
ral responses that mediate vision. There are three classes of cone
photoreceptor, labeled S, M and L, with peak sensitivity in the
short-, middle- or long-wave part of the visible spectrum, respec-
tively. The response of each cone type depends on the rate of quan-
tal absorption. The relative spectral sensitivity of each type of cone
is known (Smith & Pokorny, 1975) so the rate of quantal absorption
for S, M or L cones can be calculated directly from the spectral en-
ergy distribution of light at each point on the retina. (The spacing
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between adjacent cones in the retinal mosaic is ignored here.) This
gives the spatial distribution of stimulation for each cone type.

The retinal spatial distribution of excitation for each cone type,
therefore, requires the full spectral distribution of light at each point
within the viewed scene. This implies, for example, that a scene on a
color display with each pixel specified by its R (‘red’), G (‘green’) and
B (‘blue’) components must be transformed into a pixel-by-pixel
spectral energy distribution in order to determine the retinal image.
For example equal-energy-spectrum (EES) ‘white’ light, which by
definition has all wavelengths in the visible spectrum at the identi-
cal energy, should not be used to calculate the retinal image of the
metamer to EES on a color display because the display’s weighted
sum of the R, G and B components has a different physical spectral
composition than true EES with all wavelengths at the same energy
(compare dashed and solid lines, Fig. 1). Instead, calibration of the
display is required to transform trichromatic coordinates of the dis-
play to the full spectral distribution of light at each point of the stim-
ulus. This transformation is specific to each individual display; it
differs among displays of the same manufacturer and model, and
even for the same display over time.

3. Part 2: Typical and population extremes of retinal image
quality

3.1. Point spread functions

The effects of pupil size and wave aberrations on the shape of
the PSF can be determined separately. The PSFs shown in Fig. 2
ignore wavefront aberrations; only diffraction and longitudinal
chromatic aberration (LCA) are included in the three PSFs, shown
for wavelengths 400, 550 and 700 nm and with a 6 mm diameter
pupil.

Zernike polynomials are used to model wavefront aberrations. A
study conducted on 200 normal eyes was the basis for prior devel-
opment of a multivariate statistical model for the population dis-
tribution of Zernike coefficients up to the 36th Zernike mode
number. Fig. 3 shows the first 15 mean Zernike coefficients for a
pupil diameter of 3.0, 4.5 or 6.0 mm from the work of Thibos,
Bradley, and Hong (2002; some values in the figure were deter-
mined in that study though not explicitly presented in the paper).
These results are consistent with other population studies (Caste-
jon-Mochon, Lopez-Gil, Benito, & Artal, 2002; Porter, Guirao, Cox,
& Williams, 2001; Salmon & van de Pol, 2006). In general, values
of the Zernike coefficients vary with both the characteristics of a
particular eye and with pupil size. As mentioned above, the slight
variation expected in higher-order aberrations with wavelength

and the variation of the prismatic terms responsible for transverse
chromatic aberration were ignored (Nam, Rubinstein, & Thibos,
2010).

Point spread functions that include wave aberrations are shown
in Fig. 4 for a 6 mm diameter pupil, which is close to the pupil size
for 20–30 year-old observers at a luminance of about 100 cd/m2

(Winn, Whitaker, Elliott, & Phillips, 1994). Analyses that follow also
use a 6 mm diameter pupil. The mean Zernike coefficients from
Fig. 3c were used for the PSFs in Fig. 4a but, as discussed below,
these PSFs are not characteristic of a typical human eye. The PSFs
in Fig. 4b are based on Zernike coefficients for a ‘‘standard obser-
ver’’ described later.

3.2. Modulation transfer functions and phase shifts

The modulation transfer function (MTF) is used to assess the
eye’s optical quality. Conceptually, the MTF can be determined
for an EES light or any other spectral distribution by finding the
contrast in the retinal image for sine waves at various spatial
frequencies.

L-, M- and S-cone MTFs were determined here for 100 different
independent random samples of Zernike coefficients taken from
the population distribution given by Thibos, Bradley, and Hong
(2002). The first 15 Zernike coefficients were used. The spectral
distribution of light was EES, and luminance was varied sinusoidal-
ly in the horizontal direction (i.e., a vertically oriented sine wave).
The wavelength in focus was fixed at 570 nm, which is the average
wavelength that is optimally focused when observers report that
white-light targets are best focused (Coe, 2009). With the PSFs
determined for each visible wavelength, the retinal image at each
wavelength was found by convolving the PSF for that wavelength
with the visual stimulation at that wavelength. Repeating this for
each wavelength in the stimulus and then taking the superposition
of all wavelengths gave the spectral distribution of light at each
point on the retina resulting from a particular visual stimulus
(for example, an EES sine-wave grating varied in luminance at 10
cycles per degree). Then, at each point on the retina, the amount
of each wavelength was weighted by the Smith and Pokorny
(1975) cone spectral sensitivity function, separately for the L, M
and S cones. This gave the relative quantal absorption for each cone
type at that point on the retina. The MTF for each cone type then
was determined by finding the retinal contrast as a function of
the spatial frequency of the stimulus.

The complete set of one hundred MTFs, determined separately
for the L, M, and S cones, is shown in Fig. 5 (thin gray lines). The
median (thick black line), 5th percentile (dotted line) and 95th per-
centile (dashed line) values are also shown. The figure reveals the
large individual differences in the MTFs estimated to occur within
a normal population. The S-cone median MTF is well below the L-
and M-cone median curves, though the population variation for
each cone’s MTF is large.

Fig. 1. Spectral power distribution of a true equal-energy-spectrum ‘white’
stimulus (dashed line) and from a typical color monitor displaying a light
metameric to the equal-energy spectrum (solid line).

Fig. 2. Point spread functions due to only diffraction and longitudinal chromatic
aberration (no wavefront aberrations) for monochromatic wavelengths 400, 550
and 700 nm. Focus wavelength is 570 nm; 6 mm diameter pupil. The height and
width of each panel is 1" of visual angle. The sum of the volume under the PSF in
each panel is 1.0 but, for visual clarity, the maximum in each plot is scaled to appear
white; the actual maximum in each plot, which varies by more than 175:1, is shown
in the bottom right of each panel.
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One sampled set of Zernike coefficients gave L-, M- and S-cone
MTFs that were close to the median values (see lines connecting
symbols, Fig. 5). This set of Zernike coefficients (Table 1) was used
to define a ‘‘standard observer’’ for a 6 mm pupil; the MTFs from this
set were consistent with an observer with about half the sample
having better retinal cone contrast and half having worse contrast.
While the standard observer’s S-cone MTF is slightly better than
the median (at worst the 65 percentile instead of the median’s 50

percentile, at 10 cycles per degree), this set of sampled Zernike coef-
ficients was selected for the standard observer because the set of
coefficients gave values close to both the median MTFs (Fig. 5) and
the median magnitudes of image displacement (computed as the ra-
tio of absolute value of phase shift to spatial frequency), for all three
types of cone. The absolute value of image displacements from the
100 random independent samples of Zernike coefficients is shown
in Fig. 6. The median absolute values were close to the image

Fig. 3. Mean Zernike coefficients for the first 15 Zernike modes, for pupil diameter (a) 3 mm, (b) 4.5 mm or (c) 6 mm (from the model of Thibos, Bradley, & Hong, 2002).

Fig. 4. As Fig. 2 but for point spread functions due to diffraction, longitudinal chromatic aberration, and wavefront aberrations, for monochromatic wavelengths 400, 450,
500, 550, 600, 650, 700 and 750 nm. The maximum of each plot is set to be white; the actual maximum, which varies by over 500:1, is shown in the bottom right of each
panel. (a) Based on mean population Zernike coefficients from Fig. 3c. (b) Based on Zernike coefficients for a ‘‘standard observer’’ (see text and Table 1).
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displacements for the standard observer (compare solid lines, with
and without symbols, Fig. 6). Of course, this particular set of Zernike
coefficients is not unique in terms of giving MTFs and image dis-
placements that are near the medians for all three cone types.

The significance of spatial phase shifts in the image plane should
not be ignored when wave aberrations are introduced. A circularly
symmetric PSF due only to diffraction and longitudinal chromatic
aberration (i.e., no wave aberrations, as in Fig. 2) causes either a zero
or 180" phase shift (i.e., phase reversal) in the stimulus. Wave aber-
rations, however, can shift phase in the image plane by arbitrary
amounts. A PSF reflects both the MTF and phase shifts so a full
description of the retinal image requires an accurate representation
of both. While several other sampled sets of Zernike coefficients
gave MTFs close to the median for the three cone types (Fig. 5),
the standard observer was selected to closely represent both the
median MTFs (Fig. 5) and median image displacements (Fig. 6).

Note the larger image displacements for S than for M and L
cones in the population, for both the median and extreme (95th
percentile) values (Fig. 6).

To assess the reliability of the median and extreme MTFs, the
100 sampled sets of Zernike coefficients were randomly split into
two groups of 50 samples each. Then the median, 5th percentile
and 95th percentile MTFs for the L-, M- and S-cone were compared
for the two halves. The comparison of the two groups showed good
agreement (Fig. 7).

A straightforward way to quantify the differences in MTFs
among the L, M and S cones is to plot relative M/L and S/L contrast
sensitivity for the median, 5th percentile and 95th percentile MTFs
(Fig. 8). This shows that median contrast sensitivity is similar for
the M and L cones. Median S-cone contrast sensitivity is a log unit
or more lower than L, except at the lowest spatial frequencies.

3.3. Zernike coefficients: population means versus values for standard
observer

There are substantial differences between the Zernike coeffi-
cients for the ‘‘standard observer’’ (Table 1, and gray bars in
Fig. 9) and the mean Zernike coefficients for the population of hu-
man observers (diamonds, Fig. 9; replotted from Fig. 3c). For most
purposes, calculations based on Zernike-coefficient population
means are not representative of a typical observer’s image quality
(Thibos et al., 2002). A way to visualize the significance of the dif-
ference between the two sets of Zernike coefficients is to compare
the wavelength-dependent PSFs based on population-mean coeffi-
cients with the PSFs for the ‘‘standard observer’’ (Fig. 4a and b,
respectively). The PSFs for the standard observer are less circularly
symmetric, as expected for Zernike coefficients that are farther
from zero.

Even more significant is the difference in the MTFs based on
mean Zernike coefficients versus the Zernike coefficients for the
standard observer. Consider again the median, 5th percentile and
95th percentile MTFs for the 100 randomly sampled sets of Zernike
coefficients for pupil diameter 6 mm (Fig. 10, replotted from Fig. 5),
and compare them to (i) MTFs for the standard observer and (ii)
MTFs implied by the mean Zernike coefficients (open and solid
symbols, respectively, in Fig. 10). The MTFs for the standard obser-
ver fall close to the medians, of course, because of the criteria used
to define the standard observer. The L- and M-cone MTFs based on
population-mean Zernike coefficients are near or above the 95th
percentile MTFs; they show that mean Zernike coefficients give
estimates of image quality appropriate for only a very small frac-
tion of the population with the best optics.

4. Part 3: Estimating specific retinal images: issues and
examples

The first two parts of the paper considered retinal image quality
and how it affects stimulation of the L, M and S cones for typical

Fig. 5. Modulation transfer functions for 100 randomly sampled sets of Zernike coefficients for pupil diameter 6 mm (gray lines). The median contrast sensitivity among the
100 values at each spatial frequency is shown by the solid black line; the 5th and 95th percentile contrast sensitivity is shown by dotted and dashed lines, respectively. The
solid black lines connecting the symbols are MTFs for the ‘‘standard observer’’ (see text). (Left) L-cone MTFs. (Middle) M-cone MTFs. (Right) S-cone MTFs.

Table 1
Zernike coefficients for ‘‘standard observer’’
with 6 mm pupil.

Zernike mode
number

Coefficient
value

0 0.3243
1 $0.5796
2 0.7083
3 $0.1115
4 0.8638
5 0.0148
6 $0.1116
7 $0.1644
8 0.3053
9 $0.0673

10 $0.0273
11 $0.0115
12 0.2394
13 0.0228
14 0.0784
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and relatively extreme normal human observers, assuming a
‘white’ stimulus with an EES spectral distribution. MTFs were de-
rived using vertical sine-wave gratings. More generally, the model

developed above may be applied to any visual stimulus. In this
part, retinal image quality is determined for other types of stimuli,
with a focus on some informative cases.

Fig. 6. Image displacement functions for 100 randomly sampled sets of Zernike coefficients (6 mm diameter pupil). Ordinate values are the ratio of |phase shift|/spatial
frequency. The median, 5th percentile and 95th percentile shifts are indicated by solid, dotted and dashed black lines, respectively. Solid black lines connecting the symbols
are image displacements for the standard observer whose Zernike coefficients are given in Table 1. (Left) L cone. (Middle) M cone. (Right) S cone.

Fig. 7. Modulation transfer functions for split halves of the 100 randomly sampled sets of Zernike coefficients for pupil diameter 6 mm. Each split half had 50 sampled sets of
Zernike coefficients. The median, 5th percentile and 95th percentile contrast sensitivity for each split half are shown as a function of spatial frequency by the solid, dotted and
dashed lines, respectively. (Left) L-cone MTFs. (Middle) M-cone MTFs. (Right) S-cone MTFs.

Fig. 8. The ratio of contrast sensitivity as a function of spatial frequency, based on 100 randomly sampled sets of Zernike coefficients, for (left) M cones relative to L cones and
(right) S cones relative to L cones. The median, 5th percentile and 95th percentile are shown in each panel by the solid, dotted and dashed line, respectively. Pupil diameter is
6 mm.
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4.1. Equal-energy-spectrum ‘white’ and its CRT metamer

As discussed above, the eye’s optical imperfections can be quan-
tified by wavelength-dependent PSFs (Fig. 4), the effects of which
are determined by decomposing the visual stimulus into its mono-
chromatic components, applying each wavelength-dependent PSF,
and then combining each monochromatic spatial light distribution
by superposition. Thus, the effect of the eye’s optics on the retinal
spatial and spectral distribution of light depends on the spectral
distribution of the stimulus.

The significance of the underlying spectral distribution of the
stimulus can be missed by wrongly applying the color-vision prin-
ciple of trichromacy, which holds that the color of any spectral dis-
tribution of light can be perfectly matched by a mixture of just
three wavelengths (for example, 440 nm, 540 nm and 660 nm,
which alone appear violet, yellowish-green and red, respectively).
The basis for trichromacy is the three types of cone photorecep-
tors: L, M and S. Any given spectral distribution is perceived to
be an exact match to an entirely different spectral distribution so
long as both distributions have the identical rate of quantal absorp-
tion by the L, M and S cones; unequal spectral distributions that
satisfy this matching criterion are called metamers. An example
of two spectral distributions that appear identical is in Fig. 1. The
flat energy distribution as a function of wavelength for EES ‘white’

(dashed line) results in the same stimulation of the L, M and S
cones as the irregularly shaped spectral distribution (solid line),
which is typical of a CRT display set to exactly match EES ‘white’.

Two metameric spectral distributions of light, however, may
not have exactly the same appearance when presented as complex
patterns of light. The reason is that the underlying wavelength dis-
tributions that deliver identical rates of L-, M- and S-cone quantal
absorptions for large uniform patches (as used for color matching)
may be unequally affected by the eye’s optics, because the effects
of optics vary according to the wavelengths composing the two
stimuli. For example, MTFs for the L and M cones for the standard
observer are similar for true EES light and for its CRT metamer but
contrast sensitivity for S cones is lower for true EES light compared
to the metameric CRT chromaticity (compare open and filled sym-
bols, Fig. 11). In general, retinal images of stimulus patterns com-
posed of metameric lights may not be assumed to be equal.

4.2. Asymmetric retinal-image distortion and stimulus orientation

In the second part of the paper, MTFs were determined from
luminance modulation of EES light varied in the horizontal direc-
tion (i.e., vertically oriented gratings). In the absence of wave aber-
rations, any orientation of the stimulus gives the same results
because PSFs are circular (Fig. 2). PSFs that include effects of wave
aberrations, however, are not circular in shape (Fig. 4) so the reti-
nal image of even a uniform bar of light can (i) be asymmetric with
respect to the center of the uniform bar and (ii) depend on stimulus
orientation.

Asymmetric distortion from wave aberrations can be illustrated
with a square-wave EES grating of two cycles per degree with 100%
luminance contrast (solid lines, Fig. 12); in the figure, the one-
dimensional square-wave is a profile of a two-dimensional vertical
square-wave grating. Retinal-image profiles at monochromatic
wavelengths between 400 and 750 nm are shown for a 6 mm pupil
(Fig. 12). In the top panel, only diffraction and LCA are considered
(no wave aberrations). The wavelength-dependent distortion of
the square-wave stimulus is symmetric around the center of the
stimulus peaks and troughs. By comparison, when wave aberra-
tions for the standard observer are included (middle panel,
Fig. 12), there is clear left–right asymmetry; moreover, the shape
of the asymmetry is wavelength dependent. The asymmetry car-
ries over to the spatial profile of stimulation for the L, M and S
cones (bottom panel, Fig. 12).

Fig. 9. The first 15 Zernike coefficients for the ‘‘standard observer’’ (6 mm diameter
pupil, gray bars), whose MTFs and image displacements are similar to the median
values from the 100 randomly sampled sets of Zernike coefficients. Mean Zernike
coefficients are also shown (diamonds, replotted from Fig. 3c).

Fig. 10. Median, 5th and 95th percentile modulation transfer functions based on 100 randomly sampled sets of Zernike coefficients for pupil diameter of 6 mm (replotted
from Fig. 5), compared to MTFs for the ‘‘standard observer’’ (solid lines connecting open symbols) and to MTFs based on the mean Zernike coefficients in Fig. 3c (solid lines
connecting solid symbols). (Left) L-cone MTFs. (Middle) M-cone MTFs. (Right) S-cone MTFs.
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The influence of stimulus orientation can be seen with the same
EES, two cycle per degree square-wave grating. For the standard
observer (6 mm pupil), the retinal-image profiles for the L, M and
S cones are different for a vertically compared to horizontally ori-
ented grating (see dotted and dashed lines, Fig. 13). In general,
when wave aberrations are considered, the retinal image depends
on the overall stimulus orientation as well as the spectral and spa-
tial distribution of light.

4.3. The retinal image of an EES ‘white’ E

The loss in retinal image quality caused by the eye’s optics can
be visualized by the retinal image of the letter ‘‘E’’ of width 0.5" vi-
sual angle (cf. Williams & Hofer, 2004).

An E presented to the eye as EES ‘white’ light is shown in the far
left panel of Fig. 14. The retinal image of the E, assuming only dif-
fraction and LCA (no wave aberrations), is in the three top panels
on the right, separately for stimulation of the L, M and S cones. A
modest drop in image quality is apparent for the L-cone and M-
cone retinal images, while the S-cone retinal image is far worse
than for L or M. Adding wave aberrations of the standard observer
(bottom three panels at right) further degrades the L-cone and M-
cone retinal images but not the S-cone image, which actually ap-
pears a bit better than the S-cone image without wave aberrations.
Note, however, that the S-cone retinal image with wave aberra-
tions (bottom right panel) is poorer than the L- and M-cone images
that include wave aberrations (compare three bottom panels at
right, Fig. 14). The effect of wave aberrations on the retinal image
for each type of cone is taken up again in Section 5, where previous
studies are considered.

4.4. Retinal image quality for typical R, G and B components of a color
video display

The model developed here may be applied to a visual stimulus
with any spectral distribution. Three spectra of practical interest
are the R, G and B components of a color video display. The analysis
below is for the R, G and B guns of a Sony GDM-F520 CRT, a display
used in many vision laboratories. (The exact R, G and B spectra
vary, of course, from one video display to another.)

For any known spectral distribution of light, the MTF can be
determined for the L, M or S cones of the standard observer. The
R, G and B spectra of the CRT were measured using a PhotoRe-
search PR-650 spectroradiometer. For each type of cone (L, M or

S), the R, G and B phosphor MTFs are plotted together in a single
panel of Fig. 15. There are two main points. First, the MTFs for R
and G are higher than for B, for every type of cone. Second, the
MTFs for the R and G components are similar to each other for
the L and M cones but not for the S cones, for which G has substan-
tially higher contrast sensitivity than R. For S cones, in fact, con-
trast sensitivity for R is nearly as poor as for B.

5. Discussion

The approach here used a comprehensive model of the eye (Thi-
bos & Bradley, 1999) that incorporates pupil aperture, longitudinal
chromatic aberration and wavefront aberrations. The model gives
the spatial and spectral distribution of light on the retina from
any image presented to the eye. Such distributions were used to
determine typical and extreme (5th and 95th percentile) MTFs
for each type of cone (L, M and S), by incorporating known individ-
ual differences for the eye’s optics (Thibos, Bradley, & Hong, 2002).

A large number of random samples from the statistical distribu-
tion for individual differences also revealed median levels of con-
trast sensitivity, from which a ‘‘standard observer’’ was defined
with retinal image quality near the central tendency of the normal
human population. Typical image quality is better represented by
this standard observer than by calculations based on population-
mean Zernike coefficients because mean values tend to cancel
out positive and negative coefficients and thus underestimate the
loss of image quality, which is largely dependent on the coeffi-
cients’ magnitudes regardless of sign.

Other investigators have examined related questions about ret-
inal image quality for spectrally broadband images. Results from
the approach here are compared below to two well known studies.

5.1. A comparison to the Marimont and Wandell model

As mentioned in the Introduction, Marimont and Wandell
(1994) consider a similar problem but with a model that has two
important differences. First, the model here explicitly considers
higher-order wavefront aberrations. Second, the model here can
be used to estimate individual differences based on the statistical
population distribution for characteristics of the eye’s optics
(Thibos, Bradley, & Hong, 2002). Nonetheless, in special cases the
two models should give similar results. In particular, when only
diffraction and longitudinal chromatic aberration are included in
the model here (no wave aberrations), the modeled retinal image

Fig. 11. Modulation transfer functions for the ‘‘standard observer’’ for vertical gratings composed of (i) EES ‘white’ light (open symbols) or (ii) the typical spectral distribution
from a CRT display set to be metameric to EES ‘white’ (filled symbols). (Left) L-cone MTFs. (Middle) M-cone MTFs. (Right) S-cone MTFs.
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should be somewhat better than the results from the Marimont
and Wandell model, which incorporates an approximation for
higher-order aberrations. Also, the full model here with wave aber-
rations of the standard observer (Table 1) should give a retinal im-
age similar to but different in shape than the Marimont and
Wandell model, because introducing explicit wave aberrations re-
sults in asymmetries in the PSFs (Fig. 4) and thus in the retinal light
profile (e.g., middle panel of Fig. 12).

Retinal light profiles for an inhomogeneous chromatic image
(Fig. 16) were determined from the model here, both without
and with wave aberrations (dotted and dash-dot lines, respec-
tively), and from the Marimont and Wandell model (dashed line).
For this test case, the stimulus was composed of a square-wave

vertical stripe of width 7.3 min of arc, centered within a 1" wide
surround. Both the stripe and surround had the same chromaticity
(0.665) in the l = L/(L + M) direction of the MacLeod and Boynton
(1979) l,s cone-based coordinate system but differed in s = S/
(L + M): the stripe had an s chromaticity of 2.50 so when viewed
alone would appear decidedly bluish, while the surround had an
s chromaticity of 0.99 so was virtually metameric to EES ‘white’.
The stripe and surround were equal in luminance. The full spectral
distributions of the chromaticities were assumed to be from the vi-
deo display considered in Fig. 15.

In Fig. 16, the vertical axis is the light profile for the s chroma-
ticity, derived from the retinal image for S, M and L and then apply-
ing the definition of s = S/(L + M). The square wave (solid line) is

Fig. 12. Retinal-image profiles for an EES, two cycle per degree, 100% contrast
square-wave grating. The solid line in each panel shows the square-wave stimulus.
(Top and middle) Profiles for wavelengths 400, 450, 500, 550, 600, 650, 700 and
750 nm (6 mm pupil, 570 nm focus wavelength), with effects of only diffraction and
longitudinal chromatic aberration (no wave aberrations, top) or with added effects
of wave aberrations of the standard observer (middle). (Bottom) Retinal-image
profiles for L-, M- and S-cone stimulation with wave aberrations of the standard
observer.

Fig. 13. Retinal-image profiles for an EES, two cycle per degree, 100% contrast
square-wave grating (6 mm pupil, 570 nm focus wavelength) including effects of
wave aberrations for the standard observer. The solid line in each panel shows the
square-wave stimulus profile. The dotted and dashed lines show the profiles for a
vertically or horizontally oriented grating, respectively. (Top) Relative L-cone
stimulation; (Middle) relative M-cone stimulation; (Bottom) relative S-cone
stimulation.
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the image at the cornea. A technical point for calculation of s is
selection of units for S, M and L; previous results for S-, M- and
L-cone MTFs and light profiles were not dependent on units be-
cause plotted quantities were relative values. For Fig. 16, L and M
were normalized so that L + M gave luminance (as for the Smith
and Pokorny (1975) cone fundamentals), and S was scaled so that
s = 1.0 for the spectrally flat distribution of EES ‘white’.

As expected, the model here without wave aberrations specified
a light profile for s that that was sharper (better retinal image qual-
ity) than either the Marimont and Wandell model or the model
here that includes wave aberrations. The light profiles from the
Marimot and Wandell model and from the model here with wave
aberrations were similar but only the latter captured the asymme-
try in the distribution of light implicit in the asymmetric PSFs (as
seen in Fig. 4). Note that the light profile with higher-order wave
aberrations (dash-dot line) depends on the orientation of the stripe
in the stimulus. Overall, the comparison in this special case shows
that the model used in this paper with the optics of the standard
observer (Table 1) gives results in accord with those from the Mari-
mont and Wandell model.

Fig. 14. Retinal images of an EES letter ‘‘E’’ subtending in width 0.5" visual angle. Each panel is 1" square and rendered relative to the maximum light level in the stimulus
before entering the eye (shown at the far left). Pupil diameter is 6 mm. (Right, top row) The retinal image for the L, M and S cones assuming only diffraction and LCA (no wave
aberrations). (Right, bottom row) The retinal image for the L, M and S cones with the added effects of wave aberrations of the standard observer.

Fig. 15. Modulation transfer functions for the standard observer (6 mm diameter pupil) for vertical gratings composed of a typical video display’s R phosphor, G phosphor or
B phosphor. The MTFs for the L, M and S cones are shown separately in the left, middle and right panels, respectively. Focus wavelength 570 nm.

Fig. 16. Comparison between the retinal light profiles for s = S/(L + M) from the
model used here (focus wavelength 570 nm), without wave aberrations (dotted
line) or with the wave aberrations of the standard observer (dash-dot line), and
from the line spread function of Marimont and Wandell (dashed line). The corneal
stimulus (solid line) is a vertical stripe of width 7.3 min within a 1" wide surround.
The stripe and surround have different chromaticites (see text). Pupil diameter is
6 mm.
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5.2. How do wave aberrations affect relative L-, M- and S-cone
contrast sensitivity?

Longitudinal chromatic aberration (LCA) reduces the retinal im-
age quality of broadband spectral light because the focal distance
from refraction increases with wavelength. When light of some
wavelength is in perfect focus, light at other wavelengths is
blurred. MTFs that take account of both LCA and diffraction (but
not wave aberrations) quantify the substantial reduction in retinal
image quality that they cause for broadband EES ‘white’ light (left
panel Fig. 17, lines without symbols).

Introducing wave aberrations also reduces image quality, com-
pared to diffraction alone. The retinal image from diffraction, LCA
and wave aberrations together – all of which, of course, affect nat-
ural viewing – might be expected to be worse than from only dif-
fraction and LCA; somewhat surprisingly, however, adding the
effects of wave aberrations to those of diffraction and LCA can im-
prove image quality in some cases (McLellan, Marcos, Prieto, &
Burns, 2002). The reason is that wave aberrations reduce the influ-
ence of wavelength on contrast sensitivity; although wave aberra-
tions reduce contrast sensitivity at the wavelength of focus, they
can increase sensitivity at other wavelengths that are badly defo-
cused by LCA. The result is that wave aberrations in some cases
‘‘counteract retinal image blur from LCA (McLellan, Prieto, Marcos,
& Burns, 2006, p. 3009)’’. For example, adding the standard obser-
ver’s wave aberrations to diffraction and LCA reduces L- and M-
cone contrast sensitivity but improves S-cone sensitivity (left panel
Fig. 17, lines connecting symbols).

Comparing MTFs with versus without wave aberrations shows
that introducing wave aberrations can make contrast sensitivity
more similar for the three types of cone. For example at 20 cpd
(see left panel, Fig. 17), with the wave aberrations of the standard
observer the contrast sensitivity for L cones (and M cones) is about
20 times better than for S cones; without wave aberrations (only
LCA and diffraction), L-cone (and M-cone) sensitivity is about
200 times better than S. These results confirm that wave aberra-
tions can reduce the difference in contrast sensitivity among the
three types of cone.

A related issue is whether wave aberrations fully (or nearly)
eliminate the differences in contrast sensitivity for the L, M and S
cones. McLellan et al. (2002) report that they do: the MTFs for all
three cone types are nearly identical to each other, for each of their
three observers (their Fig. 3b–d, p.175). To consider this question,

the random sample of 100 sets of Zernike coefficients was searched
for sets with the S-cone MTF near or above the L- and M-cone
MTFs. For example, one sample (#14; middle panel, Fig. 17) had
close L-, M- and S-cone MTFs (cf. the standard observer’s MTFs in
left panel of Fig. 17); the difference between L- and M-cone con-
trast sensitivity was about the same as between L and S sensitivity.
At 20 cpd for #14, the contrast sensitivity for L cones was less than
twice that of S cones. This set of MTFs is similar to the set for an
observer reported by McLellan et al. (2002; their Fig. 3b). Another
sample at 20 cpd (#92; right panel, Fig. 17) also had L-cone sensi-
tivity less than two times higher than S, and at 40 cpd had S sensi-
tivity fractionally better than L or M sensitivity (reminiscent of the
MTFs for the observer in Fig. 3c of McLellan et al. (2002)). In sum, a
few of the 100 samples were consistent with the view that wave
aberrations can (nearly) eliminate contrast sensitivity differences
among the three types of cone.

Recall, however, that the MTFs in the middle and right panels of
Fig. 17 were selected from the sample of 100 sets because contrast
sensitivity was similar for the L, M and S cones. To consider
whether wave aberrations typically eliminate contrast-sensitivity
differences among the three types of cone, the MTF for the S cones
was compared to the MTFs for L and M cones at 10 and at 20 cpd
for all 100 randomly sampled sets of Zernike coefficients. Because
L- and M-cone MTFs tended to be similar, average L and M contrast
sensitivity was compared to S sensitivity (that is, Average (L-sensi-
tivity, M-sensitivity) relative to S-sensitivity). This sensitivity ratio
for the 100 samples is plotted in a histogram in Fig. 18 (left panel,
10 cpd; right panel, 20 cpd). A value of zero indicates equal con-
trast sensitivity for S cones compared to the average for L and M;
a positive [negative] value indicates L and M cones had higher
[lower] sensitivity than S. The horizontal axis in Fig. 18 is a log
scale so, for example, a value of +2.0 indicates lower S contrast sen-
sitivity by a factor of 100.

Overall, S-cone contrast sensitivity nearly always was lower
than L and M sensitivity (in 99% of cases at 10 cpd, and 97% of cases
at 20 cpd). In the vast majority of cases, S contrast sensitivity was
at least 10 times lower (>+1.0 on the log scale) than L and M sen-
sitivity (73% of cases at 10 cpd, 77% of cases at 20 cpd). While S-
cone sensitivity that is lower by a factor of 10 is a much smaller
sensitivity difference than a factor of more than 200 for retinal im-
age quality based on only diffraction and LCA (see arrows, Fig. 18),
the results show that wave aberrations very seldom bring L-, M-
and S-cone contrast sensitivity to comparable levels. The simulated

Fig. 17. (Left) The MTFs for each type of cone (L, M and S) with only diffraction and LCA (no wave aberrations, lines without symbols) and with the added wave aberrations of
the standard observer (lines with symbols). (Middle and right) The L-, M- and S-cone MTFs for two (#14 and #92) of the 100 randomly sampled sets of Zernike coefficients, for
which MTFs with wave aberrations were unusually similar for all three types of cone. For all panels, the spectral light distribution is EES, pupil diameter is 6 mm and focus
wavelength is 570 nm.
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retinal image of the letter E (Fig. 14) is a demonstration of this
point for the standard observer. The top three panels on the right
of that figure include only diffraction and LCA; the image for S
cones is far worse than for L and M. Wave aberrations, included
in the images in the three bottom panels, further degrade the im-
age for L and M cones but improve somewhat the image for S
cones; nonetheless, even with wave aberrations the retinal image
for S cones does not approach the quality of the image for L or M
cones.

5.3. Other applications for the model of retinal image quality

The model used here can be employed for many other purposes.
Psychophysical experiments aiming to infer neural processes often
depend on knowledge of an accurate retinal (not corneal) spatial
distribution of light. The model can be used to determine a typical
retinal image for the standard observer, given any external stimu-
lus; moreover, a population range of retinal images can be esti-
mated for, say, the central 90% of the population by finding the
extreme L-, M- and S-cone MTFs for the best and worst 5% of the
population. This can be useful for excluding optical stimulus dis-
tortion as a viable account for experimental measurements, there-
by implicating neural processes.

The pupil is largest, and retinal image quality often poorest,
with dim illumination. A straightforward generalization of the
model is to substitute the scotopic luminosity function V0(k) for
the cone spectral sensitivity function SC(k) in Eq. (1). This gives
the spatial distribution IR(x,y) for rod excitation, from which a
rod MTF or other characteristics of rod stimulation can be
determined.

The model’s capability to incorporate population variation in
retinal image quality can be applied to several practical issues,
including design decisions for instruments, spectral illumination
and chromatically complex surfaces. An estimate of the retinal im-
age for any light stimulus, including any object under any illumi-
nant, can be useful for example to determine the legibility of text
for, say, 99% of the population by assuming retinal image quality
for the worst 1% of normal human observers. This may be particu-
larly valuable for examining nighttime visibility (for example, for
signage), when the pupil is largest. More generally, standards can
be developed for detection or discrimination that take account of
losses in retinal image quality for the vast majority of the normal
population (say 99%, again by using retinal image quality for the
worst 1% of the normal population). A related application is assess-
ment of image quality (digital or otherwise). The ability to incorpo-

rate normal variation in the eye’s optics permits perceived image-
quality assessments to take account of the substantial variation in
the retinal image, which depends on both the particular image pre-
sented to the eye and individual differences within the population
of human observers.
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