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ABSTRACT
In an era when the protection of intellectual property rights
becomes more and more important, providing robust and ef-
ficient watermarking techniques is crucial, both in terms of
embedding and detection. In this paper, the authors specif-
ically focus on the latter stage. Most often, the detection
consists in the comparison of a fixed and non-adaptive de-
cision threshold to a correlation coe�cient. This threshold
is usually determined either theoretically or experimentally.
Here, it is proposed to apply Grubbs’ test, a simple statisti-
cal test for outliers, on the correlation data in order to take
a binary decision about the presence or the absence of the
searched watermark. The proposed technique is applied to
three algorithms from the literature: the correlation data
generated by the detector is fed to Grubbs’ test. The ob-
tained results show that Grubbs’ test is e�cient, robust and
reliable. Above all, it automatically adapts to the searched
watermark and can be easily applied to most types of wa-
termarking approaches.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: Image Processing and
Computer Vision—Applications

General Terms
Watermarking, detection, Grubbs test

Keywords
Watermarking, detection, Grubbs test

1. INTRODUCTION
During the past two decades, watermarking has proven

to be a practical and e�cient solution to secure all kinds of
digital documents. Typically, a watermarking scheme fea-
tures two separate stages. On the one hand, the embedding
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step inserts an information, called watermark, within a host
signal, in such a way that it cannot be perceived (e.g. in-
visible in images and video contents). On the other hand,
the detection step assesses the presence or the absence of
the watermark within the processed content. For optimal
performances, it is crucial that both the embedding and the
detection steps are jointly designed. Eventually, the detec-
tion results are binarized into a positive/negative output;
the performances of this decision mechanism critically a↵ect
the e�ciency of the overall watermarking chain.
In this study, a new decision mechanism is proposed. It

can only be applied to correlation-based techniques, that is –
as pointed out in [1] – most techniques: “The example system

we have used in our investigations, however fall into the

class of correlation-based watermarking systems. Although

this class does not include all possible watermarking systems,

it does include the majority of example systems presented in

this book, and, we believe, the majority of systems proposed

in the literature.”
Three kinds of correlation techniques can be encountered:

the Linear Correlation (LC), the Normalized Correlation
(NC) and the Correlation Coe�cient (CC). Typically, the
resulting values are compared to a decision threshold whose
determination is often delicate and complex, but critical
when it comes to ensure best performances, that is lowest
False Positive (FP) and False Negative False Negative (FN)
rates. Three scenarios (or hypotheses) are typically assessed
to best determine the decision threshold. The detection is
performed either (1) on a set of un-watermarked images, or
(2) on a set of watermarked images, or (3) on a set of water-
marked images but with mismatching watermarks. In this
paper, notations H0, H1 and H2 will respectively denote
the first, second and third scenarios.
Numerous methodologies, of varying complexities, have

been employed to determine the detection threshold. A
common and simple practice is based on the “detector re-
sponse”, a diagram showing the correlation value obtained
in a large number of contents, of which a single one has been
watermarked. The resulting plot is used to empirically de-
rive a threshold value. In [2], the detection threshold is set
to the highest correlation value (0.23) obtained in a set of
un-watermarked images. A similar approach is proposed in
[3], where a large number of images (1000) are assessed un-
der H0 and H1 hypotheses. The Probability Density Func-
tions (PDFs) of the obtained correlation under H0 and H1
are then plotted. The threshold is set approximately half-
way between H0 and H1 distributions, that is 0.17 in [3].



More rigorous approaches often consider the statistical
properties of the PDF of the correlation under H0, H1 and
H2 hypotheses. These distributions are typically assumed
to be Gaussian. The obtained statistical models may then
be used to determine the threshold that maximizes the True
Positive (TP) rate while limiting the False Positive (FP)
rate to the desired value [4, 5, 6]. This is known as the
Neyman-Pearson criterion.

No matter how complex are these methodologies, they
all provide a fixed detection threshold. Yet, numerous fac-
tors may influence the correlation, including the host signal
as well as the embedded watermark (dimensions, statistical
properties, etc). A given threshold might be optimal for a
given set of host signals and watermarks but may not be
suited to other contents. Moreover, the recurrent assump-
tion that processed signals are normally distributed may
not hold in practice, thus inducing further detection mis-
matches. Besides, any variation in the embedding method
(domain, equation) requires for the detection threshold to
be re-estimated; in [7], for instance, a detection threshold
is used for additive embedding, while another threshold is
used for multiplicative embedding. When equations for the
threshold are proposed, they only hold within the context of
their study, that is for a particular watermarking scheme. In
[4], for instance, the proposed equation (their Eq. 15) only
applies to additive embedding within the Discrete Wavelet
Transform (DWT) domain. In [6], a similar equation is
available for multiplicative embedding in the Discrete Cosine
Transform (DCT) domain. As an alternative, an adaptive
detector was proposed in [8]; the detector, for each correla-
tion peak, computes the probability that it does not belong
to scenario H0, based on a folded-normal distribution whose
parameters may be estimated at detection.

In this study, a fast, universal and e�cient decision method
used to assess the presence or the absence of a watermark
is proposed. It is based on Grubbs’ test for outliers, a
test that searches for eventual outlying observations in the
cross-correlation data. Therefore, there is no need for a de-
tection threshold anymore. Provided that the detection is
correlation-based, the proposed method can be applied to
all embedding domains and equations (additive, multiplica-
tive, substitutive, etc), whatever the correlation is (linear or
normalized, 1D or 2D). Methods computing a CC can also
be easily adapted to the proposed technique. This stands
in contrast with classical threshold estimation techniques,
such as in [4], where derived equations solely apply to the
proposed watermarking scheme. Moreover, in most previous
works, several assumptions on the statistics of the host signal
and the watermark coe�cients are necessary. Instead, the
proposed technique solely requires for the cross-correlation
values to be approximately normally distributed.

In this study, the proposed method is adapted to three al-
gorithms of the literature [9, 10, 3] that operate in di↵erent
embedding domains and feature various embedding equa-
tions. This paper is organized as follows: section 2 first de-
scribes the proposed decision method; section 3 then briefly
reviews the watermarking techniques in which the proposed
method was evaluated. Section 4 then presents experimen-
tal results and thoroughly assesses the performances of the
proposed method. Finally, section 5 concludes this work.

2. PEAK DETECTION: GRUBBS’ TEST FOR
OUTLIERS

According to [11], “an outlier is an observation which devi-

ates so much from the other observations as to arouse suspi-

cions that it was generated by a di↵erent mechanism”. When
viewing cross-correlation plots such as the ones from Fig. 1,
it makes sense to consider the detection peak as an outlying
value with respect to the surrounding correlation noise. For
this reason, it is proposed here to apply outlier detection
theory to the problem of watermark detection decision.
The literature provides a large range of outlier detection

techniques [12], whether they rely on data indicators (e.g.
samples depth, deviation, distance, density, etc) or make
assumptions on the statistical properties of the input data
and perform statistical tests. In this study, it is proposed
to use Grubbs’ test [13] as it is robust, reliable and compu-
tationally inexpensive. In some of our earlier experiments,
the Extreme Studentized Deviate (ESD) test [14] showed
equivalent performances to those of Grubbs’. However, al-
ternatives could be considered, such as Dixon’s test [15] or
Tietjen-Moore’s test [16]. In this paper, we only focus on
Grubbs’ test.
Typically, Grubbs’ test is used to detect the presence of

a single outlier in a univariate dataset whose distribution
is approximately Gaussian. Both one-sided and two-sided
variants have been proposed; here, the proposed watermark
detection method is based on the latter. Grubbs’ test two-
sided statistic writes as

TG =
max |s(n)� µs|

�s
(1)

where s(n) denotes the input samples, µs and �s respec-
tively being the samples mean and standard deviation. The
hypothesis that there is an outlier is accepted if TG exceeds
its critical value, that is

TG >

N � 1p
N

s
(t↵G/(2N), N�2

)2

N � 2 + (t↵G/(2N), N�2

)2
(2)

where N denotes the number of samples and t↵G/(2N), N�2

the critical value of Student’s t-distribution with N � 2 de-
grees of freedom and a significance level of ↵G/(2N).
How does this apply to watermark detection? Let us now

consider a typical still image watermark detection scheme:
the searched watermark and the possibly marked signal are
cross-correlated. The obtained cross-correlation (be it 1D
or 2D) is input to Grubbs’ test. Figure 1 shows an example
of 2D cross-correlation data obtained with a modified ver-
sion of the algorithm in [10] that was used to watermark the
image Lena. Instead of using LC or Rao’s detectors, as pro-
posed in the original work, a normalized 2D cross-correlation
[17] was computed between the watermarked sub-band and
the watermark. Despite variations in correlation amplitudes
due to two di↵erent sets of watermarking parameters (see
section 3.3 for further details), the cross-correlation data
features a central peak surrounded by a correlation noise of
(much) lower amplitude. Provided that (1) the embedded
watermark exhibits good auto-correlation properties and (2)
the cross-correlation noise is (approximately) normally dis-
tributed, the detection is positive if Grubbs’ test cannot re-
ject the hypothesis that the central peak is an outlier.
Grubbs’ test only takes two parameters as inputs, the cor-

relation data and the significance level ↵G. The latter cor-
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Figure 1: Cross-correlation 2D data obtained with [10] for image Lena for two sets of embedding parameters.

responds to the maximum probability that the occurrence
of the correlation peaks is due to chance alone, in other
words the maximum probability that the detected correla-
tion peaks are not outlying values. Therefore, ↵G can be
used to control the tradeo↵ between the True Positive (TP)
and the FP detection rates: high (resp. low) values bring
higher (resp. lower) TP and FP rates. Practical experiments
will further detail the role of ↵G in section 4. The proposed
watermark detection decision technique features an iterated
version of Grubbs’ test which discards outliers one at a time
until no more outliers are found.

3. APPLICATION TO EXISTING WATER-
MARKING SCHEMES

Three watermarking schemes [9, 10, 3] were selected from
the literature in order to evaluate the performances of the
proposed Grubbs-based decision technique. All three schemes
exhibit various characteristics: di↵erent embedding domains
and equations, various watermark dimensions and multiple
detection algorithms. Table 1 summarizes the main features
and characteristics of the three experimented algorithms.
Section 3.1 briefly reviews the selected algorithms and Sec-
tion 3.2 details the modifications which were made to incor-
porate Grubbs’ test. Section 3.3 presents preliminary detec-
tion results, and Section 3.4 describes the process by which
it was made sure that tested cross-correlation data is ap-
proximately Gaussian. More complete and detailed results
are available in Section 4.

3.1 Description of experimented algorithms
Lin et al., 2008 [9] – The watermark is embedded within

the 3rd Low-High (LH3) sub-band of the DWT decomposi-
tion. The targeted sub-band is split into blocks of 7 con-
secutive coe�cients. Each block is used to hold one bit of
watermark information, by quantization of its two largest
coe�cients. At the detection, the di↵erence between the
two largest DWT coe�cients of every block is compared to a
threshold to retrieve the binary watermark information. The
detection score is then given by the NC coe�cient, which is

eventually compared to a fixed detection threshold of 0.23
in order to ensure a FP probability of 1.03 ⇥ 10�7. In a
later publication [18], it was shown that this technique may
present security issues; this is of no concern for the current
study as it purely focuses on detection performances.
Kwitt et al., 2009 [10] – Here, additive spread spectrum

embedding is performed in the Dual Tree Complex Wavelet
Transform (DT-CWT) domain. A perceptual mask is used
to weight the watermark prior its embedding. Their study
mostly focuses on various detection methods, and concludes
that the Rao detector performs better than the simple LC.
Solachidis and Pitas, 2001 [3] – Multiplicative embed-

ding is performed within the modulus of the Discrete Fourier
Transform (DFT) domain, at mid-frequencies of the Fourier
spectrum. The watermark is shaped as concentric rings, ar-
ranged into angular segments that each carry a watermark
coe�cient, for a total of 2300 coe�cients arranged into 115
concentric rings and 20 sectors. The detection computes a
CC between the searched watermark and the information
retrieved in the Fourier magnitude.

3.2 Adaptation to Grubbs
As explained in section 2, Grubbs’ test takes cross-correlation

data as an input. However, the selected watermarking schemes
do not feature such an information. Therefore, all three
schemes were modified accordingly for Grubbs’ test to be
successfully incorporated.
Lin et al., 2008 [9] – Instead of computing the CC be-

tween the searched watermark and the retrieved information
from the DWT domain, the 1D normalized CC is used to
obtain a detection vector whose length is 2 ⇥ 512 � 1, that
is 1023. Grubbs’ test is then conducted on the resulting
cross-correlation vector.
Kwitt et al., 2009 [10] – Instead of Rao’s test, the

2D normalized CC (from [17]) is computed between the ex-
tracted sub-band and the searched watermark (both being
128 ⇥ 128 matrices for a level 1 embedding process applied
on a 256 ⇥ 256 image). Grubbs’ test is then applied to the
resulting 255⇥ 255 cross-correlation data.
Solachidis and Pitas, 2001 [3] – The hidden infor-



Table 1: Principal features and characteristics of experimented watermarking techniques.

Embedding Detection Watermark
Domain Method Method Correlation dimensions

[9] DWT Quantization Blind CC 1⇥ 512
[10] DT-CWT Additive Blind LC, Rao’s test 128⇥ 128
[3] DFT Multiplicative Blind CC 20⇥ 115
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Figure 2: Variability of the correlation matrices: distribution of the (vectorized) inter-correlation values
obtained in three algorithms from the literature. The highest and second highest correlation peaks are
respectively depicted by a round symbol (•) and a triangular symbol (H).

mation is first retrieved by averaging, for each frequency-
angular segment, the modulus of the corresponding Fourier
coe�cients. The 2D normalized CC (from [17]) is then per-
formed between the retrieved matrix and the searched wa-
termark, both of which featuring 20⇥ 115 coe�cients. The
resulting 39⇥ 229 CC data is then input to Grubbs’ test.

3.3 Preliminary results and remarks
Before delving into large experiments and substantial re-

sults, it is proposed to first experiment all three modified
watermarking schemes [3, 9, 10] on the Lena 512⇥ 512 im-
age. The detection is applied to the watermarked image,
without any attacks. Fig. 2 plots the (vectorized) cross-
correlation data obtained; in each case, the highest (⇠

max

)
and second highest (⇠

2nd

) correlation peaks are respectively
depicted by a round and a triangular symbol. From now on,
the sliding position of the cross-correlation is called correla-

tion shift (see x-axes in Fig. 2).
In all three algorithms, the detection peak occurs at the

center of the cross-correlation data, that is when the searched
watermark and the retrieved information fully overlap and
therefore best match. This peak, and its amplitude ⇠

max

,
correspond to the correlation value of the original scheme;
in [10], this corresponds to the output of the simple LC de-
tector, not Rao’s test whose output cannot be compared
to a correlation value. In each plot of Fig. 2, the dashed

line represent the detection threshold ⌧ of the original algo-
rithm. The detection is thus positive in all three techniques
as the cross-correlation peak is higher than the threshold.
Moreover, the amplitudes of the cross-correlation noise – in
sliding positions other than the center – are mostly below
the threshold, thus indicating that the searched watermark
is only detected at its exact location.
As mentioned earlier, the length of the vectorized cross-

correlation data depends on the experimented algorithm, re-
spectively 1023, 255⇥ 255 = 65025 and 39⇥ 229 = 8931 in
[9], [10] and [3]. As can be seen in Fig. 2, the amplitude
of the cross-correlation peak significantly varies amongst ex-
perimented algorithms. Similarly, the average amplitude of
the cross-correlation noise shows strong variations as well.
For instance, the second highest cross-correlation peak in [3]
(Fig. 2c) is equal to the cross-correlation peak in [10] (Fig.
1b). Another striking observation is that the second high-
est cross-correlation peak in [3] is higher than the advised
detection threshold, thus indicating that that the advocated
threshold (0.17) may not be optimal.
Table 2 lists the values of the CC’s highest and second

highest peaks in all three experimented algorithms on im-
age Lena, as well as correlation gaps between the peaks and
the threshold. Here, it can be seen that the cross-correlation
gap �⌧

2nd

between the original detection threshold and the
second highest peak shows a large variability amongst algo-



rithms. The same observation can be made on the gap �max

2nd

between the highest and second highest detection peaks.

Table 2: Variability of the correlation peaks ob-
tained on image Lena.

Alg. ⌧

a

Peaksb Corr. gapsc

⇠

max

⇠

2nd

�⌧
2nd

�max

2nd

[3] 0.170 1.036 0.201 -0.031 0.835

[9] 0.230 0.996 0.115 0.766 0.881

[10] 0.029 0.309 0.042 -0.013 0.267

a

⌧ is the detection threshold.
b

⇠

max

and ⇠

2nd

are respectively the highest and second
highest correlation peaks.
c �⌧

2nd

is the correlation gap between ⌧ and ⇠

2nd

, and �max

2nd

is the gap between ⇠

max

and ⇠

2nd

.

Besides, even the same embedding algorithm can produce
very di↵erent cross-correlation data with varying parame-
ters. Such a scenario is illustrated in Fig. 1 for the modified
algorithm [10] – see previous Section 2 –. In Fig. 1a, the
DT-CWT sub-band (1,4) was watermarked with a dwr of
12, whereas in Fig. 1b the sub-band (3,4) was watermarked
with a dwr of 20. The cross-correlation noise (that is the
correlation values located around the central peak) exhibit
a standard deviation of 1.66 ⇥ 10�3 in the first case, and
1.11 ⇥ 10�2 in the second case, that is a variation close to
one order of magnitude.

Naturally, these variations in cross-correlation are to be
expected with such di↵erent embedding techniques and pa-
rameters. This emphasizes the fact that the detection thresh-
old must be derived for each embedding technique and pa-
rameter set. Moreover, the methodology used to derive the
threshold also needs to be adapted to the considered embed-
ding scheme, which makes the matter even more di�cult.

When applying Grubbs’ test to the cross-correlation data
shown in Fig. 2 (↵G = 10�6), only the highest peak is
positively detected as an outlier in each case. Such a de-
tection performance is especially valuable when considering
the large di↵erences between the experimented watermark-
ing schemes and the resulting cross-correlation data. There-
fore, these preliminary tests tend to show that Grubbs’ test
provides a universal method for taking the decision whether
a watermark is present or absent.

3.4 Gaussianity of the cross-correlation data
Most statistical methods for estimating the detection thresh-

old make several assumptions on the statistical properties
of processed signals. As mentioned earlier, Grubbs’ test
stands in contrast to such approaches as it solely requires for
the cross-correlation data to be normally distributed, even
approximately [13, 19]. According to [20], the sample size
should be greater than 6, another requirement that is obvi-
ously met in the studied context where the cross-correlation
data is likely to hold thousands of coe�cients.

In the preliminary experiments of previous section, Grubbs’
test successfully detected the cross-correlation peaks as out-
lying values. However, it was not ensured whether the cross-
correlation data could be reasonably approximated to a Gaus-
sian distribution. It was thus proposed to bin the cross-
correlation data into histograms that were fitted to a Gaus-
sian distribution. Fig. 3 shows the obtained histograms for

preliminary cases I (see Fig. 2a) and III (see Fig. 2c). His-
tograms are superimposed onto the fitted Gaussian curves.
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Figure 3: Application of [9] and [3] to image Lena:
distribution of the cross-correlation data.

In [3] (Fig. 3b), the cross-correlation histogram fits very
well a Gaussian distribution – the correlation (Pearson’s r)
between the histogram and the fitted curve reaches 0.998. In
[9] it is best fitted by a Laplacian distribution, yet the Gaus-
sian fit still provides a reasonable approximation. Table 3
provides goodness of fit for the estimated distributions in
terms of Pearson’s r and Root Mean Square Error (RMSE).
Overall, the distribution of the obtained cross-correlation
data are close enough to a Gaussian distribution and there-
fore can be input to Grubbs’ test. It is important to note
that the distributions of the cross-correlation data in Fig. 3
are not centered due to the outlying correlation peaks (re-
spectively 0.996 and 1.036 in [9] and [3]).

Table 3: Goodnessa of fit for cross-correlation data
in [9] and [3] on image Lena

Gaussian fit Laplacian fit

Pearson’s r RMSE Pearson’s r RMSE

[9] 0.970 0.203 0.986 0.168

[3] 0.998 0.174 0.979 0.633

a Bold values designate best fitting parameters.

Now focusing on preliminary case II (see Fig. 2b), the
observation of the signals processed in algorithm in [10] re-
vealed various kinds of distributions. Figure 4 shows the
distribution of four successively processed signals: (1) the
DT-CWT sub-band (Fig. 4a), (2) the watermark (Fig. 4b),
(3) the watermarked sub-band (Fig. 4c) and (4) the cross-
correlation data (Fig. 4d). Again, the distribution of the
cross-correlation data in Fig. 4d is not centered due to the
outlying correlation peak with amplitude 0.309. Each of
these distributions were fitted to both Gaussian and Lapla-
cian models; the resulting goodness of fit is listed in Table
4.
As can be seen, the distributions of both the original and

watermarked sub-bands are rather Laplacian, whereas the
watermark is normally distributed. In the end, it appears
that the cross-correlation data still follows a Gaussian distri-
bution (Pearson’s r of 0.997), despite the Laplacian behavior
of the sub-band values. Here, typical estimation techniques
for the detection threshold – that assume Gaussian distri-
butions of both the host signal and the watermark – may



Table 4: Gaussianity of the signals processed in [10]:
goodnessa of fit for Gaussian and Laplacian model.

Gaussian fit Laplacian fit

r

b

RMSE r

b

RMSE

Subband 0.934 0.0030 0.980 0.0018

Watermark 0.996 0.0146 0.972 0.0541

Marked subb. 0.990 0.0012 0.995 0.0007

Cross-corr. 1.000 0.1015 0.987 0.5463

a Bold values designate best fitting parameters.
b

r denotes Pearson’s correlation coe�cient.

provide erroneous values. On the contrary, the requirements
for Grubbs’ are all met, therefore ensuring that the detected
outlying values indeed correspond to cross-correlation peaks
for which the detection is positive.
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Figure 4: Application of [10] to image Lena: distri-
bution of the host signal, the watermark, the marked
signal and the cross-correlation.

4. RESULTS
Preliminary results tend to show that Grubbs’ test is capa-

ble of locating watermark detection peaks in di↵erent scenar-
ios. Large scale experiments are now conducted in order to
systematically assess Grubbs’ test ability to detect the pres-
ence or the absence of a watermark from cross-correlation
data.

4.1 Experimental apparatus and parameters
Hereon, two main datasets are used for the experiments:

dataset Da contains 1000 gray level images from the BOWS-

2 contest1; dataset Db contains 10 color images from the
Kodak Database2. The second dataset Db serves in scenarios
that involve a large number of detections, so as to keep the
experimental scale within reasonable bounds. The datasets
are listed and detailed in Table 5.
Three main experimental hypotheses are considered. One

of them (H1) should ideally lead to positive detections, con-
trary to the other two (H0 and H2) in which detection
should conclude in the absence of the searched watermark.

• In scenario H0, original – therefore un-watermarked –
images from dataset Da are input to detection.

• In scenario H1, watermarked images from dataset Da

are first attacked and then input to detection, which
searches for the initially embedded watermark.

• In scenario H2, watermarked images from dataset Db

are input to detection, which searches for 1000 erro-
neous watermarks.

When necessary, that is in scenario H1, four types of at-
tacks are simulated: (1) attack Blur 3 applies Gaussian blur
with standard deviation � = 3; (2) attack Pois. 120 inserts
Poisson noise with parameter � = 120; attack Pois. 140 in-
serts Poisson noise with parameter � = 140; (4) attack Med.

5 performs 5⇥ 5 median filtering.

Table 5: Datasets used in the experiments

Name Description Type Size Resolution

Da BOWS-2 Gray level 1000 512⇥ 512

Db Kodak Color 10 512⇥ 768

4.2 A first glance at cross-correlation data
The whole concept of the present study relies on the as-

sumption that cross-correlation data should behave di↵er-
ently depending on the presence or the absence of a water-
mark. To be more precise, it is expected in scenario H1 that
a visible peak emerges at the center of the cross-correlation
data, whereas this should not happen in scenario H0. In
some cases, however, and notably when geometric distor-
tions are undergone, the correlation peak may move away
from the center (provided that the watermarking algorithm
is resilient against geometric distortions). Alternatively, the
correlation data may contain several peaks (either by design
or due to geometric distortions); the iterative implementa-
tion of Grubbs’ test (see Section 2) is expected to detect
them one at a time. To verify this, the modified algorithm
[10] was evaluated against the dataset Da under both H0
and H1 hypotheses.
In each scenario, the 2D cross-correlation data was col-

lected and averaged over the 1000 experimented images. The
resulting averages are plotted in Fig. 5. The obtained results
show that, over a large number of images, there is indeed
a clearly visible cross-correlation peak for the H1 scenario
(Fig. 5a). This stands in contrast with scenario H0 (Fig.
5b) in which the central peak of the cross-correlation barely
emerges from the surrounding cross-correlation noise.

1http://bows2.ec-lille.fr
2http://r0k.us/graphics/kodak/



The averaged cross-correlation data of Fig. 5 were input
to Grubbs’ test for outlier, with ↵G = 10�6. In Fig. 5a, five
outliers are detected, including the central peak and four
others in its vicinity. In Fig. 5b, no outliers are detected at
all. Similar results were obtained in [9] and [3]. Therefore,
this study’s underlying assumption holds in practice.

4.3 Gaussianity of the cross-correlation over
experimental datasets

Similarly to what was done in section 3.4, it is proposed
here to ensure the normality of the collected cross-correlation
data over the entire datasets Da and Db. The modified al-
gorithms [9] and [3] were evaluated under hypotheses H0
(dataset Da), H1 (dataset Da) and H2 (dataset Db) – see
section 4.1 for their definitions –. This resulted in 1000
cross-correlation data under hypothesis H0, 4000 under hy-
pothesis H1 and 10000 under hypothesis H2.

The collected cross-correlation data were then binned into
histograms, which in turn were fitted to a Gaussian distribu-
tion. The goodness of fit was evaluted in terms of Pearson’s
r and RMSE between the experimental histogram and the
fitted curve. For each algorithm and hypothesis, Table 6
lists the average, minimum and maximum figures for both
indicators.

Table 6: Gaussian fits goodness of fit

Pearson’s r RMSE
Mean Min Max Mean Min Max
Solachidis et al. [3]

H0 0.9977 0.9555 1.0000 0.0296 0.0043 0.1560
H1 0.9952 0.9367 0.9999 0.0387 0.0068 0.1609
H2 0.9988 0.9650 0.9999 0.0236 0.0072 0.1456

Lin et al. [9]

H0 0.9883 0.9631 0.9987 0.0856 0.0270 0.1438
H1 0.9897 0.9588 0.9998 0.0814 0.0109 0.1551
H2 0.9916 0.9189 0.9998 0.0720 0.0127 0.2094

In [3], the cross-correlation data fits very well a Gaussian
distribution; Pearson’s r never falls below 0.9555 and av-
erages at 0.9977. In [9], the goodness of fit is reasonably
high as well, high enough to justify the use of Grubbs’ test;
Pearson’s r reaches 0.9189 at its minimum. This can be
explained by the fact that, as was already seen in Fig. 3
and Table 3, the cross-correlation data in [9] is best approx-
imated by a Laplacian distribution. Still, such a distribution
is well handled by Grubbs’ test, provided that its standard
deviation is high enough not to present heavy tails – which
is the case here.

4.4 True Positive and False Positive rates
Properly setting the value of Grubbs’ significance level ↵G

is crucial as it drives detection performances. High values
of ↵G (e.g. 10�2) are very likely to detect outlying values,
but on the other hand are also likely to detect non-outlying
values with respect to the considered context. Inversely, on
the same input data, low values of ↵G (e.g. 10�8) ensure not
to detect these false outliers, but are also likely to miss truly
outlying values. Transposed to watermarking, this means
that both TP and FP rates are likely to increase with ↵G.

Grubbs’ test detection output was collected in modified

algorithms [9] and [3] for all three scenarios H0, H1 and H2,
for varying ↵G (10�8 to 10�2). Under H0, none of the 1000
original images of dataset Da led to false detections. As for
hypotheses H1 (TP) and H2 (FP), the obtained evolution
in FP and TP rates as a function of ↵G is plotted in Fig. 6.
Note that the values for the plotted TP rates correspond to
Pois. 120 attacks only.
As expected, the experimental results show that both TP

(H1) and FP (H2) rates increase with ↵G. Still, in [3],
the TP rate barely increases and remains rather stable over
the entire experimented values of ↵G. The two modified
algorithms present rather opposite behavior. Algorithm [3],
on the bright side, displays a high TP rate (around 95%),
but on the downside a high FP rate as well (up to 50% for
low values of ↵G). As for [9], both its TP rates and FP
rates are rather low; the first range from 30 to 50% while
the second remains below 15%.
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Figure 6: TP and FP rates against Grubbs’ signif-
icance level ↵G in [3] and [9]. TP rates correspond
to H1 scenarios featuring the attack Pois. 120 ; FP
rates correspond to scenarios H2.

For comparison purposes, we also experimented the origi-
nal algorithm [3] under hypothesis H2. Interestingly, it fea-
tures an FP rate of 37.78% (see dotted-dashed line in Fig. 6),
meaning that Grubbs’ test outperforms the original detec-
tion algorithm, in terms of FPs, for significance levels below
↵G = 10�3. In addition, we will see later that the method
in [3] presents abnormally high detection rates. Still, the
main objective of this study is to investigate whether the
proposed detection decision mechanism is competitive, that
is how much better or worse it performs in comparison to
the original detection schemes.

4.5 Comparison of original and proposed de-
tection schemes

As was just pointed out, the main objective of our study
is to compare the proposed Grubbs-based detection scheme
to the initial threshold-based detection scheme. To this end,
the modified algorithms [9] and [3] were evaluated under hy-
pothesis H1, a scenario which features four types of attacks
(see Section 4.1 for full details). Based on TP and FP exper-
imental rates obtained in previous section, Grubbs’ signifi-
cance level ↵G will be set to 10�6, which provides a proper
tradeo↵ between the ability to retrieve a watermark and the
ability to distinguish between di↵erent watermarks. Cor-
responding values for TP and FP rates are listed in Table
7.
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Figure 5: Average 2D cross-correlation data obtained with [10] against 1000 marked images (a), and against
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Table 7: FP and TP rates: operating values for a
Grubbs significance level of ↵G = 10�6 under H1 hy-
pothesis and attack Pois. 120

TP rate FP rate
[9] 96.4% 6.34%
[3] 34.5% 0.0%

For both the original and the modified algorithms, and
for each type of attack, the number of watermarked images
in which the detection is positive was computed. These val-
ues are denoted TPOrig and TPGrubbs, and correspond to
the TP rates respectively obtained in the original and the
modified algorithm. In addition, we counted the number of
images in which the modified detection scheme retrieves the
watermark (TP), while the original scheme does not (FN);
this number is denoted �

TP

. We also counted the number
of images in which the opposite scenario arises: the original
scheme retrieves the watermark, but the modified scheme
does not; this number is denoted �

FN

. The obtained results
are listed in Table 8.

As was observed previously in Fig. 6, results from Ta-
ble 8 demonstrate weak robustness performances for [9] in
comparison to [3]. Nevertheless, the use of Grubbs’ test im-
proves the detection performances in most cases, no matter
how good is the robustness of the original method. In [3],
the introduction of Gaussian blur (attack Blur 3 ) leads to
strongly diverging results when using either the original or
the modified detection scheme. This suspicious e↵ect is fur-
ther investigated in the next section.

Fig. 7 plots the detection gain (�
TP

, positive bars) and
loss (�

FN

, negative bars) obtained in both experimented
methods. The suspicious results obtained in [3] with attack
Blur 3 are omitted for readability purposes. Apart from
the attack Med. 5, the proposed detection method performs
better than the original detection methods and their fixed
thresholds. Detection rates significantly improve, by up to
10% in [9] against the attack Blur 3.

Table 8: Robustness to attacks (%) for dataset Da:
original and modified schemes.

Blur 3 Pois. 120 Pois. 140 Med. 5

Solachidis et al. [3]

TPOrig 78.8⇤ 92.5 87.6 99.9

TPGrubbs 7.5⇤ 96.4 94.5 98.2

�
TP

0.0⇤ 4.0 7.2 0.0

�
FN

71.3⇤ 0.0 0.0 1.7

Lin et al. [9]

TPOrig 20.5 25.1 12.0 95.2

TPGrubbs 30.7 34.5 18.1 98.1

�
TP

10.2 9.4 6.1 2.9

�
FN

0.0 0.0 0.0 0.0

⇤ These unexpected results are further discussed in section
4.6

4.6 Investigating suspicious results
Some results obtained with algorithm [3] in previous Sec-

tion raised suspicions. In particular, under the attack Blur 3,
it is striking to notice that the original detection scheme re-
trieves 78.8% of the watermarks, while the modified scheme
only detects 7.5% of them. This is especially surprising in
regards to other attacks or algorithms where such an e↵ect
never occurs. To further investigate this specific scenario,
we plotted in Fig. 8 the distribution of the CC returned by
the original detection scheme (which is equal to the ampli-
tude of the central peak of the cross-correlation data) in four
scenarios: (1) on original un-watermarked images (H0); (2)
on watermarked images in the absence of any attack (H10);
(3) on watermarked images after Blur 3 attack (H1B3

); and
(4) in a variant of scenario H2 which also features the Blur

3 attack (H2B3

).
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.

In the absence of attacks (H0 and H10), the distribution of
the cross-correlation peaks are narrow and clearly disjoint,
and the detection threshold (0.17) is located in between the
two. The original detection scheme is thus correct for both of
these scenarios. When the images are attacked (H1B3

and
H2B3

), these distributions are widening and shift towards
the threshold, so that they strongly overlap. In this case,
the advocated threshold (0.17) fails to distinguish between
those images in which a watermark should be detected and
those in which it should not. For this reason, the technique
in [3] features a high FP rate. The use of 0.5 as a threshold
may circumvent this issue, but then none of the watermarked
and attacked images would be detected at all.

Practical experiments were conducted on dataset Db un-
der hypothesis H2B3

. Results show that the original detec-
tion method in [3] presents a FP rate of 46.1%, while the
proposed detection method never detects the wrong water-
mark. This tends to show that the suspicious results from
Table 8 are more likely to be in favor of the proposed detec-
tion technique, which in this case takes the better decision
to consider that the watermark cannot be retrieved.

4.7 Original versus modified algorithms: in-
vestigating the reasons for disagreement

With the exception of the suspicious results obtained un-
der hypothesis H1B3

, the other results – see Fig. 7 – show
increased detection performances for most attacks when us-
ing the proposed detection method. One may wonder, how-
ever, under which circumstances exactly Grubbs’ test dis-
agrees with the original threshold-based detection method.
Experimental results for scenarios H1 and H2 were further
examined in two situations: (i) when Grubbs’ test positively
detects an outlier but the peak correlation is below the orig-
inal detection threshold; (ii) when inversely, Grubbs’ test
does not detect any outlier but the peak correlation is above
the original detection threshold.
In both situations (i) and (ii), the average, minimum and

maximum amplitudes of the corresponding cross-correlation
data were computed for each value of the correlation shift.
The resulting data is plotted in Fig. 9. The dark blue curve
represents the average value of the cross-correlation data (A
in Fig. 9a). The average central peak is represented by a red
round symbol (D in Fig. 9a). The amplitude range within
which the central peak is comprised is delimited by two hor-
izontal light red lines (E and F in Fig. 9a) that respectively
cross the y-axis at the minimum and maximum values of
the central peak. Finally, the light blue area delimited by
the curves (B and C in Fig. 9a), represents the ampli-
tude range that comprises the remaining cross-correlation
data, which we call cross-correlation noise. In other words,
B (resp. C) plots, in all shifting positions except the cen-
ter, the minimum (resp. maximum) value amongst collected
cross-correlation data. The same representation is used in
Fig. 9b, 9c and 9d.
Two scenarios can be envisioned: either (1) the noise

range (light blue area) and the peak range (light red area) do
not overlap or (2) they do. In the first case, this would tend
to show that a watermark can indeed be detected. In the sec-
ond case, either the hypothesis that a watermark is present
should be rejected, or the searched watermark presents bad
auto-correlation properties, which is problematic and very
likely to induce False Alarms.
Fig. 9a corresponds to 286H1 scenarios in which the mod-

ified algorithm [9] positively detects the watermark while
the original algorithm does not. Out of the 1000 images of
dataset Da, this occured 102 times under Blur 3 attack, 29
times under Med. 5 attack, 94 times under Pois. 120 and
61 times under Pois. 140 ; in total, this sums up to 286 cases
out of 4000. As can be seen in Fig. 9a, despite the fact that
the amplitude of the cross-correlation peak is located below
the original detection threshold, its values span a range that
is clearly above and disjoint from the cross-correlation noise.
The presence of a detection peak cannot be denied; there-
fore Grubbs’ test takes the better decision to consider that
a watermark is indeed found.
A similar scenario can be seen in Fig. 9b: the modi-

fied algorithm [3] performs better in 86 images out of 4000
(30 against Pois. 120 attack, 56 against Pois. 140 at-
tack). Again, although it is less obvious than in Fig. 9a, the
values of the cross-correlation peak and those of the cross-
correlation noise are most of the time non-overlapping. The
presence of a watermark is thus extremely likely, which is
consistent with Grubbs’ decision.
Conversely, the modified algorithm [3] does not detect any

watermark in 772 images (742 against Blur 3, 2 against



Pois. 120, 2 against Pois. 140 and 26 against Med. 5 )
while the original algorithm does. Fig. 9c represents the
average, maximum and minimum values of the 770 corre-
sponding cross-correlation data. Here, the dynamic of the
cross-correlation noise is much larger relatively to the ampli-
tude of the peak; for some correlation shifts, the maximum
amplitude of the noise even exceeds the average amplitude
of the peak. Moreover, the cross-correlation noise regularly
exceeds the original detection threshold: cross-correlation
peaks that should go undetected may therefore be detected
which is likely to cause False Alarms. Again, this puts back
into question the choice for the original detection threshold,
as was already discussed in Section 4.6. In [9], the modi-
fied detection scheme never missed a watermark that was
detected by the original detector.

Finally, the modified algorithm [3] was experimented un-
der hypothesis H2. Out of the 10000 detections, the original
detection is positive in 3778 cases, that is 37.78% of False
Alarms. In contrast, the proposed detection scheme is pos-
itive in 634 cases only, that is a reduction of 31.44% in FP
rate. Fig. 9d plots a summary of the 3151 images in which
the original detection is positive (thus erroneous) and the
modified detection is not. Although less blatant here, the
maximum amplitude of the cross-correlation noise regularly
exceeds the original detection threshold. With Grubbs’ test,
this limited overlap is significant enough to correctly reject
the hypothesis that the correct watermark is present.

4.8 Receiver Operating Characteristics
So far, results suggest that Grubbs’ test for outlier is

suited to the detection of peaks within cross-correlation data.
Moreover, the significance level can be used to tune the ac-
curacy of the detector, that is to (jointly) control the TP and
FP rates. Here, it is proposed to plot the Receiver Operating
Characteristic (ROC) of the modified detection scheme, for
various values of ↵G, and to compare it to the ROC curve
of the original algorithm [9].

The original detection CC was collected under two hy-
potheses: H0 and H1 (against Pois. 120 attack). Their
distribution, in either case, are not Gaussian. Rather, H0’s
distribution is best fitted to a skew-normal distribution with
parameters ⇥H0

=
�
µ = �8.722 ⇥ 10�3, � = 4.262 ⇥ 10�2,

⇠ = 1.054
 
, where ⇠ is the skewness parameter. As for H1

(Pois. 120 ), it is best fitted by a generalized skew-hyperbolic
distribution with parameters ⇥H1

=
�
µ = �0.174, � =

0.050, ↵ = 858.3, � = 844.4
 
, where � is the skewness pa-

rameter. Fig. 10 plots the distributions of the CC under
both hypotheses (solid lines) as well as the corresponding
fits (colored areas). Here, most detection methods – that
often assume normal distribution of the CC – are likely not
to estimate a proper detection threshold.

The obtained distributions for H0 and H1 were then used
to plot the ROC curve in Fig. 11. For best understanding,
the ROC curve is plotted twice: in Fig. 11a, it is plotted over
a linear x-axis; in Fig. 11b, it is plotted in its entirety over
a logarithmic x-axis. The solid green curve is drawn from
experimental data (the solid curves from Fig. 10), while
the dashed red curve is drawn from interpolated data (the
fits from Fig. 10). The experimental operating point of the
original detection scheme is schematized by a green diamond
symbol; its interpolation from the fitted curves is schema-
tized by a red square symbol (Fig. 11b). Their positions are
matching in Fig. 11a.
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Figure 9: Average cross-correlation data in various
scenarios. In (a) and (b) (respectively algorithms
[9] and [3]), Grubbs’ test outperforms the original
algorithm. In (c), Grubbs’ test fails to detect the
watermark but the original algorithm [3] is success-
ful. In (d), Grubbs’ test avoids detecting wrong wa-
termarks but the original algorithm [3] does not.

The ROC curve of the modified scheme is plotted in blue
with round symbols. Its values are based on experimental
results only: it is not possible to interpolate neither FP nor
TP rates for other values of ↵G with Grubbs’ test. As seen
earlier, both TP and FP rates in the modified detection
scheme increase with ↵G.
As can be seen from Fig. 11b, the ROC curve of the

proposed method passes over the original curve for values
of ↵G below 10�6, that is the value which we used in the
experiments. The optimal value for ↵G is thus 10�6 as it
provides the best TP rate with a null FP rate. Moreover, the
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proposed method, ↵G increases the TP rate by more than
11% (from 22.8% to 34.5%) in comparison to the original
operating point.

0.000 0.002 0.004 0.006 0.008 0.010

0.
1

0.
3

0.
5

False Posit ive rate

Tr
ue

 P
os

iti
ve

 ra
te

●
●
●

●
●

10− 8
10− 7
10− 6

10− 5 10− 4

●

ROC curve in [Lin] (interpolat ion)
ROC curve in [Lin] (experimental)
Operat ing point  in [Lin] (experimental)
ROC curve [Grubbs] (experimental)

(a) Zoomed ROC curve

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Posit ive rate

Tr
ue

 P
os

iti
ve

 ra
te

0 10− 16 10− 12 10− 8 10− 4 100

●
●
●

●
●

●

10− 8
10− 7
10− 6

10− 5
10− 4

10− 3
●

ROC curve in [Lin] (interpolat ion)
Operat ing point  in [Lin] (interpolat ion)
ROC curve in [Lin] (experimental)
Operat ing point  in [Lin] (experimental)
ROC curve [Grubbs] (experimental)

(b) ROC curve (logarithmic x axis)

Figure 11: ROC curves computed on the initial al-
gorithm in [9]. The experimental data are depicted
by the solid green curves, the interpolated data by
the dashed red curve, and the Grubbs detections are
depicted by the blue symbols.

5. CONCLUSION
This work presents a prospective study on the possible use

of outlier detection methods on correlation data for water-
mark detection without the need to select a threshold. It
was shown that Grubbs’ test (among other outlier detection
methods) can be used to accurately determine whether the
watermark is present within the tested content. Grubbs’s
test is virtually applicable on any correlation-based water-
marking method, whatever the embedding domain, the em-
bedding equation, etc. In this work, three algorithms from
the literature [3, 10, 9] were adapted to incorporate Grubbs’
test. The adaptation is straightforward and brings improve-
ments in most cases. Specifically, our experiments showed
that either the FP rate was reduced (in [3]), or the TP
rate was increased (in [9]), without one a↵ecting the other.
Finally, we showed that varying the significance level in
Grubbs’ test allows fine tuning of both the False Positive
rate and the True Positive rate.

6. REFERENCES
[1] Ingemar J. Cox, Matthew L. Miller, Je↵rey A. Bloom,

Jessica Fridrich, and Ton Kalker.
Digital Watermarking and Steganography. The
Morgan Kaufmann Series in Multimedia Information
and Systems, San Francisco, CA, USA, 2nd edition,
2007.

[2] Ante Poljicak, Midija Mandic, and Darko Agic.
Discrete Fourier transform–based watermarking
method with an optimal implementation radius.
Journal of Electronic Imaging, 20(3):033008–1–8, July
2011.

[3] V Solachidis and I Pitas. Circularly symmetric
watermark embedding in 2-D DFT domain. IEEE
transactions on image processing : a publication of the
IEEE Signal Processing Society, 10(11):1741–53,
January 2001.

[4] Mauro Barni, Franco Bartolini, and Alessandro Piva.
Improved wavelet-based watermarking through
pixel-wise masking. IEEE transactions on image
processing : a publication of the IEEE Signal
Processing Society, 10(5):783–91, January 2001.

[5] Wei Liu, Lina Dong, and Wenjun Zeng. Optimum
Detection for Spread-Spectrum Watermarking That
Employs Self-Masking. IEEE Transactions on
Information Forensics and Security, 2(4):645–654,
December 2007.

[6] A Piva, M Barni, F Bartolini, and V Cappellini.
Threshold Selection for Correlation-Based Watermark
Detection. In Proc. COST254 Workshop on Intelligent
Communications, pages 5—-6, 1998.

[7] Qiang Cheng and T.S. Huang. Robust optimum
detection of transform domain multiplicative
watermarks. IEEE Transactions on Signal Processing,
51(4):906–924, April 2003.

[8] Michael Arnold, Peter G. Baum, and Xiao-Ming
Chen. Robust detection of audio watermarks after
acoustic path transmission. In Proceedings of the 12th
ACM workshop on Multimedia and security -
MM&Sec ’10, page 117, New York, New York, USA,
2010. ACM Press.

[9] WH Lin, SJ Horng, and TW Kao. An E�cient
Watermarking Method Based on Significant Di↵erence



of Wavelet Coe�cient Quantization. IEEE
Transactions on Multimedia, 10(5):746–757, August
2008.

[10] Roland Kwitt, Peter Meerwald, and Andreas Uhl.
Blind DT-CWT domain additive spread-spectrum
watermark detection. In 2009 16th International
Conference on Digital Signal Processing, pages 1–8.
IEEE, July 2009.

[11] D. M. Hawkins. Identification of Outliers. Biometrical
Journal, 29(2):198–198, 1980.

[12] Victoria Hodge and Jim Austin. A Survey of Outlier
Detection Methodologies. Artificial Intelligence
Review, 22(2):85–126, October 2004.

[13] Frank E. Grubbs. Procedures for detecting outlying
observations in samples. Technometrics, 11(1):1–21,
1969.

[14] B. Rosner. Percentage Points for a Generalized ESD
Many-Outlier Procedure. Technometrics,
25(2):165–172, 1983.

[15] W. J. Dixon. Processing data for Outliers. Biometrics,
9(1):74—-89, 1953.

[16] Gary L. Tietjen and Roger H. Moore. Some
Grubbs-Type Statistics for the Detection of Outliers.
Technometrics, 14(3):583—-597, 1972.

[17] J. P. Lewis. Fast normalized cross-correlation. In
Vision interface, pages 120–123, 1995.

[18] P Meerwald, C Koidl, and A Uhl. Attack on
”Watermarking Method Based on Significant
Di↵erence of Wavelet Coe�cient Quantization”. IEEE
Transactions on Multimedia, 11(5):1037–1041, August
2009.

[19] V. Barnett and T. Lewis. Outliers in Statistical Data.
Wiley Series in Probability and Mathematical
Statistics, John Wiley & Sons; Chichester, 1994.

[20] C Croarkin and P Tobias. NIST/SEMATECH
e-handbook of statistical methods. Retrieved January,
1:2014, 2014.


