Retinal image computation software

/*************************************************************************************
 These programs are free software; you can redistribute them and/or modify
 them under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.
 *************************************************************************************/



  1. The screen's Spectral Power distribution (SPD).
  2. The Judd51 , , .
  3. The Judd Specs matrix.
  4. The Zernike coefficients modelling the wave aberration.
  5. Cones fundamentals.


top
            The CRT calibration using a spectroradiometer  provides  the three gun's Spectral Power Distribution (SPD).
             This SPD is used to decompose the displayed image into wavelengths (See Formulas).


SPD 


top
            The , , color matching functions are represented in the figure below.

xyzbar

top
        The Judd Specs matrix gives the tristimulus values for the three guns.
        Note that the luminances (YR, YG, YB) are normalised so the Green luminance (YG) is set to 100.0.
        We give below an example of Judd Specs file corresponding to one of the Shevell's lab monitors.


x
y
Y
Red
 0.6266
 0.3442
 26.4531 
Green 
 0.2908 
 0.6145
 100.0
Blue
 0.1522
 0.0831 
 15.6325 

        See the Formula's page for information about the Judd specs computation.


top
          Here is an example set of typical Zernike coefficients (Thibos et al. 2002).

Zernike mode number
Coefficient value
1
-0.7380
2
0.5802
3
0.6098
4
0.1641
5
0.8314
6
0.1405
7
-0.2377
8
0.1395
9
0.1944
10
0.1191
11
0.0287
12
0.0002
13
0.1293
14
-0.0081
15
-0.0068


top
            The software can either load the Cones fundamentals or compute them from Judd51 , ,

download the cones fundamentals' excel spread sheet.
LMS


Conversion matrixfrom Judd'51 colormatching functions:

$ \left[
\begin{tabular}{ c}
L \\
M\\
S \\
\end{tabular}\right]$= $ \left[
\begin{tabular}{ c c c }
0.15514 & 0.54312 & -0.03286\\
-0.15514 & 0.4...
... c}
$\overline{x}$\\
$\overline{y}$\\
$\overline{z}$\\
\end{tabular}\right]
$ 






/***************************************************************************
-------------------
Last modification : march 10th 2005
Florent Autrusseau
email : Florent.Autrusseau@univ-nantes.fr
-------------------
 ***************************************************************************/