This document quickly gives the main steps preformed by the retinal image software

1 Load the Judd51 \bar{x}, \bar{y} and \bar{z}

Figure 1: Judd551 $\bar{x}, \bar{y}, \bar{z}$

2 Load the CRT's Spectral Power Distribution

Figure 2: CRT's Spectral Power Distribution

3 Compute (or load) the Smith-Pokorny fundamentals

Figure 3: Smith-Pokorny fundamentals

$$
\left[\begin{array}{c}
\mathrm{L} \\
\mathrm{M} \\
\mathrm{~S}
\end{array}\right]=\left[\begin{array}{ccc}
0.15514 & 0.54312 & -0.03286 \\
-0.15514 & 0.45684 & 0.03286 \\
0.0 & 0.0 & 1.0204
\end{array}\right] \times\left[\begin{array}{c}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right]
$$

Table 1: Judd51 xyzbar2LMS conversion

$$
\left[\begin{array}{c}
\mathrm{L} \\
\mathrm{M} \\
\mathrm{~S}
\end{array}\right]=\left[\begin{array}{ccc}
0.15514 & 0.54312 & -0.03286 \\
-0.15514 & 0.45684 & 0.03286 \\
0.0 & 0.0 & 0.01608
\end{array}\right] \times\left[\begin{array}{c}
\bar{x} \\
\bar{y} \\
\bar{z}
\end{array}\right]
$$

Table 2: Judd-Vos78 xyzbar2LMS conversion

4 Compute the PSFs for each wavelength

```
                                    PF (\lambda)=AT\times\operatorname{exp}(\frac{i2\piW}{\lambda})
    ASF(\lambda)=ifft(PF(\lambda))
    OTF(\lambda)=fft(PSF(\lambda))
    RI(\lambda)=I(\lambda)\otimesPSF(\lambda)
PSF}(\lambda)=\operatorname{Mod}(ASF(\lambda))=ASF(\lambda)\times\operatorname{conj}(ASF(\lambda)
    PTF (\lambda)=Phase (OTF (\lambda))
MTF (\lambda)= Modulus (OTF (\lambda))
PF Pupil function
AT Amplitude Transmittance (Stiles Crawford effect)
\(\mathrm{W} \quad\) Wave aberration \(=f(\) Pupil diameter \()\)
ASF Amplitude Spread Function
OTF Optical Transfer Function
Retinal Image
Displayed image (CRT)
```


Default Parameters :

```
Pupil Diameter 3 mm ,
Focus Wavelength \(\quad 570 \mathrm{~nm}\), Zernike order 15,
```

Pupil shift X, Pupil Shift Y
Wavelengths
Displayed image size
Pupil function size
0mm, 400:10:750, 512 pixels, 256.

Images given for wavelegths: $400,450,500,550,600$, 650, 700, 750.

Full images, Zoom-in (110 $\times 110$ pixels), Surface plot (110×110).

400 nm

450 nm

500 nm

550 nm
Table 3: PSFs

Table 4: PSFs

5 Read the input images (lsY2LMS2RGB)

R
G
B

Table 5: Input images

Background :
$1 \mathrm{ls} \mathrm{Y}=(0.72,0.5,10.0)$
LMS $=(7.2,2.8,5.0)$
$\mathrm{RGB}=(17,4,2)$
Grid:
lsY $=(0.6,3.0,12.0)$
LMS $=(7.2,4.8,36.0)$
RGB $=(2,7,23)$

6 Decompose the input image into wavelengths (for each (x, y) pixel)

$$
\begin{align*}
\operatorname{Image}[\lambda, x, y]= & \operatorname{Im}_{R}[x, y] \times W_{R} \times S P D_{R}+ \\
& \operatorname{Im}_{G}[x, y] \times W_{G} \times S P D_{G}+ \tag{8}\\
& \operatorname{Im}_{B}[x, y] \times W_{B} \times S P D_{B}
\end{align*}
$$

where $I m_{R}, I m_{G}$ and $I m_{B}$ represents the percentage of the $\mathrm{R}, \mathrm{G}, \mathrm{B}$ guns for each pixel, W_{R}, W_{G}, W_{B} are weighting parameters :

$$
\begin{equation*}
W_{R}=\frac{Y_{R}}{\sum_{\lambda}\left(V(\lambda) \times S P D_{R}\right)} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
W_{G} & =\frac{Y_{G}}{\sum_{\lambda}\left(V(\lambda) \times S P D_{G}\right)} \tag{10}\\
W_{B} & =\frac{Y_{B}}{\sum_{\lambda}\left(V(\lambda) \times S P D_{B}\right)} \tag{11}
\end{align*}
$$

and $S P D_{R}, S P D_{G}$ and $S P D_{B}$ are the spectral power distribution of the Red, Green and Blue guns.

400 nm	450 nm	500 nm	550 nm
600 nm	650 nm	700 nm	750 nm

Table 6: Wavelengths images

7 Convolve each PSF with each wavelength image

This gives the retinal images for each wavelength.
Convolution theorem:
$W I(\lambda) \otimes P S F(\lambda)=i f f t\{f f t[W I(\lambda)] \times f f t[P S F(\lambda)]\}$
where $W I(\lambda)$ is the wavelength representation of the displayed image
400 nm
450 nm
500 nm
550 nm
700 nm
750 nm

Table 7: Retinal images

8 Compute the LMS cones absorption

For each type of cones (L,M,S)
For each (x, y) pixel position
For each wavelength
conesabs $(x, y)=\sum_{\lambda=400}^{850}(R I(\lambda, x, y) \times \operatorname{SPF}($ cones,$\lambda))$
$R I(\lambda, x, y)$: Wavelength Retinal image, SPF (cones, λ) : Smith-Pokorny fundamentals

Table 8: LMS images

9 Compute land s

$l=\frac{L}{L+M}, s=\frac{S}{L+M}, m=1-l$
Compute the average value on several windows sizes ($2 \mathrm{x} 2,4 \mathrm{x} 4,6 \mathrm{x} 6,8 \mathrm{x} 8,10 \mathrm{x} 10,12 \mathrm{x} 12$ pixels) (The windows are centered in the middle of a square).

Different pupil size ($2.5,3.0,3.5,4.0 \mathrm{~mm}$) and different Focus wavelengths ($500,525,550,575 \mathrm{~nm}$) have been tested. 2 inducing chrfomaticities, 4 induced chromaticities.

Plots below shows results for a ls $\mathrm{Y}=(0.6,3.0,12.0)$ inducing chromaticity and for a ($0.7,0.5,10.0$) induced chromaticity.

Table 9: Results

10 Apply a center-surround receptive field

Not tested yet, but the program allows to create and tuine $\mathrm{a}+\mathrm{s} /$-s center surround Receptive field (Difference of Gaussian), and to convolve it with the LMS cones maps.

