next up previous
Next: Convolve each PSF with Up: The Retinal-Image software Previous: Read the input images

Decompose the input image into wavelengths (for each (x,y) pixel)

\begin{displaymath}\begin{array}{cc} Image[\lambda, x, y] = & Im_{R}[x,y] \times...
...G} +  & Im_{B}[x,y] \times W_{B} \times SPD_{B} \end{array}\end{displaymath} (8)

where $ Im_{R}$, $ Im_{G}$ and $ Im_{B}$ represents the percentage of the R, G, B guns for each pixel, $ W_{R}$, $ W_{G}$, $ W_{B}$ are weighting parameters :

$\displaystyle W_{R} = \frac{Y_{R}}{\sum_{\lambda}\left( V\left( \lambda \right) \times SPD_{R}\right) }$ (9)

$\displaystyle W_{G} = \frac{Y_{G}}{\sum_{\lambda}\left( V\left( \lambda \right) \times SPD_{G}\right) }$ (10)

$\displaystyle W_{B} = \frac{Y_{B}}{\sum_{\lambda}\left( V\left( \lambda \right) \times SPD_{B}\right) }$ (11)

and $ SPD_{R}$, $ SPD_{G}$ and $ SPD_{B}$ are the spectral power distribution of the Red, Green and Blue guns.


Table 6: Wavelengths images
400 nm 450 nm 500 nm 550 nm
\includegraphics[width=0.2\columnwidth]{Images/Wav400.ps} \includegraphics[width=0.2\columnwidth]{Images/Wav450.ps} \includegraphics[width=0.2\columnwidth]{Images/Wav500.ps} \includegraphics[width=0.2\columnwidth]{Images/Wav550.ps}
600 nm 650 nm 700 nm 750 nm
\includegraphics[width=0.2\columnwidth]{Images/Wav600.ps} \includegraphics[width=0.2\columnwidth]{Images/Wav650.ps} \includegraphics[width=0.2\columnwidth]{Images/Wav700.ps} \includegraphics[width=0.2\columnwidth]{Images/Wav750.ps}



next up previous
Next: Convolve each PSF with Up: The Retinal-Image software Previous: Read the input images
Florent Autrusseau 2005-03-09